Agricultural Mitigation Strategies for Animal Management Systems in California

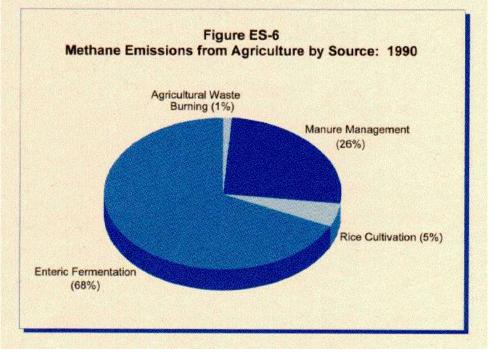
Ermias Kebreab

Professor of Animal Science Sesnon Endowed Chair in Sustainable Agriculture University of California, Davis

MODELING SUSTAINABLE AGRICULTURE at

Overview

- Introduction
- Mitigation potential to reduce GHG
- Objective of the current analysis
- Methodology
 - Data collection
 - Statistical analysis
- Results
- Further work



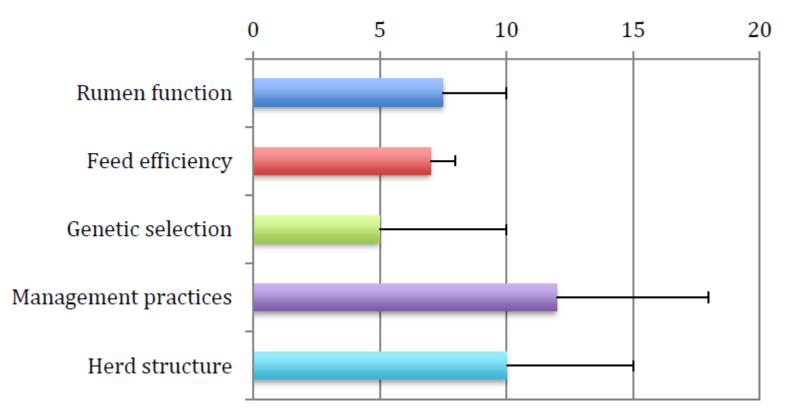
MODELING SUSTAINABLE AGRICULTURE at

Introduction

GHG from agriculture

- Methane
- Nitrous Oxide
- Carbon Dioxide
- Sources of emission in animal agriculture
 - Enteric fermentation
 - Manure storage
 - Manure application

Dairy sector in CA


	Cov	vs That Have Ca	lved	ł	leifers 500+ I	Lbs.						
Year	Beef	Dairy	All	Cow Replacements Beef Milk		Other Heifers	Calves Under 500 Lbs	Bulls 500+	Steers 500+ Lbs.	All Cattle and Calves		
	1,000 Head											
2001	780	1,560	2,340	140	750	170	1,050	70	630	5,150		
2002	760	1,620	2,380	135	770	170	1,040	65	640	5,200		
2003	740	1,670	2,410	130	790	170	1,070	65	615	5,250		
2004	720	1,700	2,420	125	730	170	1,050	65	640	5,200		
2005	720	1,740	2,460	130	760	190	1,120	70	670	5,400		
2006	680	1,770	2,450	120	790	180	1,200	75	635	5,450		
2007	700	1,790	2,490	125	790	170	1,190	70	665	5,500		
2008	655	1,835	2,490	110	800	180	1,170	70	630	5,450		
2009	620	1,840	2,460	115	780	170	1,060	65	600	5,250		
2010	610	1,760	2,370	120	750	210	1,050	70	580	5,150		
2011	600	1,750	2,350	110	760	220	1,100	70	590	5,200		
2012	620	1,780	2,400	110	800	240	1,100	70	630	5,350		

California Department of Food and Agriculture

MODELING SUSTAINABLE AGRICULTURE at UCD

Mitigation Potential

Potential Reductions in Methane per unit of Milk

MODELING SUSTAINABLE AGRICULTURE at UC

Dietary Manipulations

- Various dietary mitigation strategies
 - Lipids/fat
 - Starch vs fiber
 - Ionophores (monensin)
- ETAAC (2008) report
 - 16% NRC recommendations
 - 11% specific agents
 - 3% long-term management and breeding

Objective

- Quantify potential reduction in methane emissions from dairy cattle in CA by formulating diets based on:
 - Current practices (1)
 - NRC recommendation
 - Unrestricted (2)
 - Restricted (3)
 - Minimized methane (4)

Methodology

• Data from 40 dairies in CA collected

Diet	Corn Silage	Alfalfa Silage	Oat/Whea t/ Barley	Alf. Hay	Oat/Whe at Hay	Groun d Flaked	Barley Grain	Canola	Cotton Seeds	SBM	Soy H.	AH	DDG	Whea t Mill	Grains	Rice Bran	Fat Suppl.	Min & Vit Suppl.
	10	•	Silage	10	•	Corn	_	<u> </u>	-	6	-	0	-	10	2		-	
1	19	0	12	18	0	13	5	0	5	6	0	0	8	10	0	0	1	2
2	28	12	0	13	3	24	0	0	9	9	0	0	0	0	0	0	1	3
3	17	0	0	29	0	11	6	6	11	0	0	6	3	3	3	3	1	3
4	36	0	22	8	1	12	0	7	4	0	2	4	0	0	0	0	0	4

Distribution (percentile)

	Median	10^{th}	25 th	75 th	90 th	
Milk yield, kg/d	32.1	24.9	27.2	35.8	39.0	
DMI, kg/d	23.3	20.7	22.5	24.4	25.5	

 Feed ingredients converted to chemical composition (according to NRC)

Methane Emission Estimation

- IPCC Tier 2 equation most common
- Not preferred because
 - It does not account for nutrient differences
 - Less precise
 - Assessment of mitigation limited to reduction in cow numbers and feed consumption
- Developed our own model using over 1,000 energy balance records

Methane model

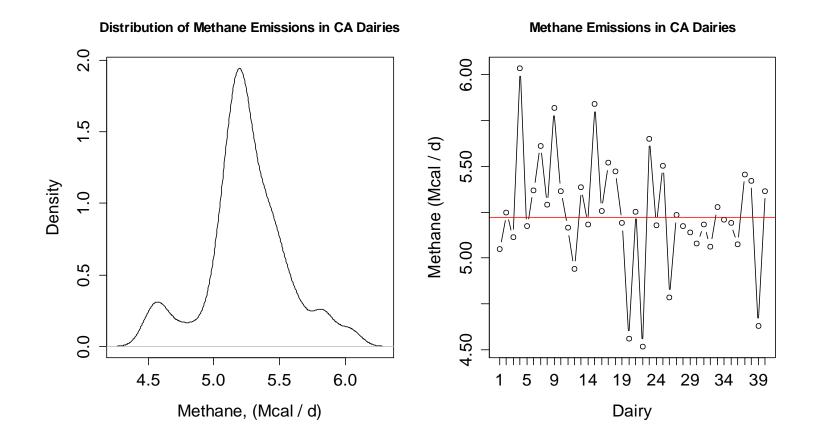
$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{Z}_1\boldsymbol{\alpha} + \mathbf{Z}_2\boldsymbol{\xi} + \boldsymbol{\varepsilon},$

where **y** is the vector of *n* methane records **X**, **Z**₁ and **Z**₂ are design matrices relating element of **y** to elements of β , α and ξ which represent vectors of regression coefficients, animal random regression coefficients, and study random regression coefficients. ϵ is the vector of errors

Methane (GE/d) = -0.32 (0.318) + 0.19 (0.008) DMI (kg/d) – 0.05 (0.046) EE (%) + 0.038 (0.007) NDF (%)

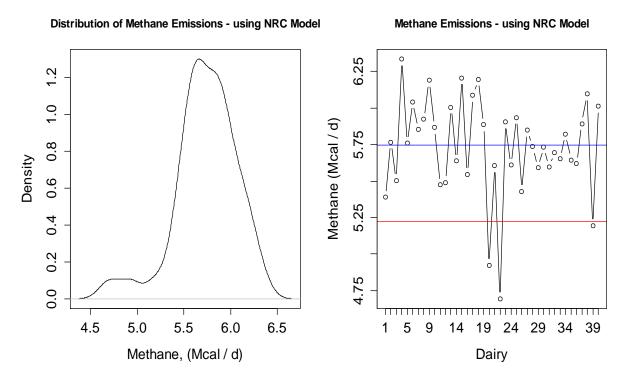
Linear Programing model

 Investigated changes in methane emissions for all scenarios

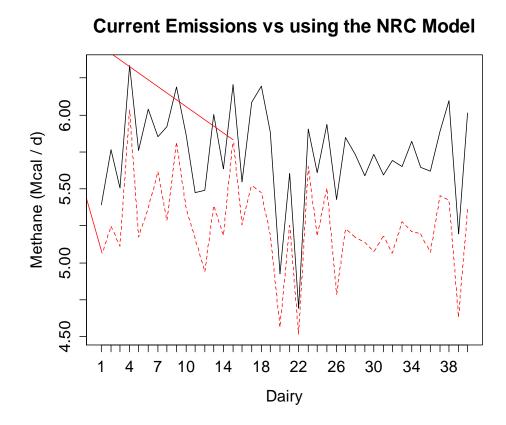

 $min(\mathbf{c}^{\mathsf{T}}\mathbf{x})$, subject to $\mathbf{A}\mathbf{x} \{\leq, =, \geq\} \mathbf{b}$,

 where c is the vector of objective function coefficients (e.g. cost), x is the vector of decision variables (feed), A is the matrix of constraints coefficients and b is the vector of constraints right hand sides (requirements).

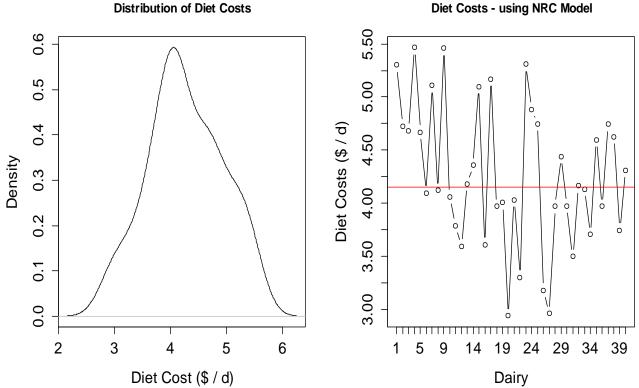
Objective


- Quantify potential reduction in methane emissions from dairy cattle in CA by formulating diets based on:
 - Current practices (least cost formulation)
 - NRC recommendation (least cost)
 - Unrestricted
 - Restricted (practical)
 - Minimized methane (least emission)

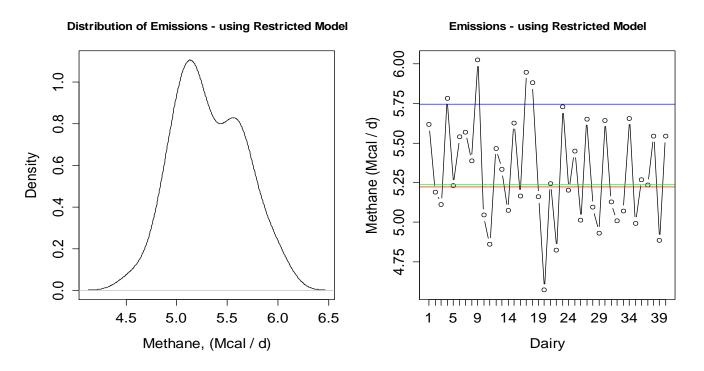
Results – Scenario 1


MODELING SUSTAINABLE AGRICULTURE at UCD/

Results – Scenario 2

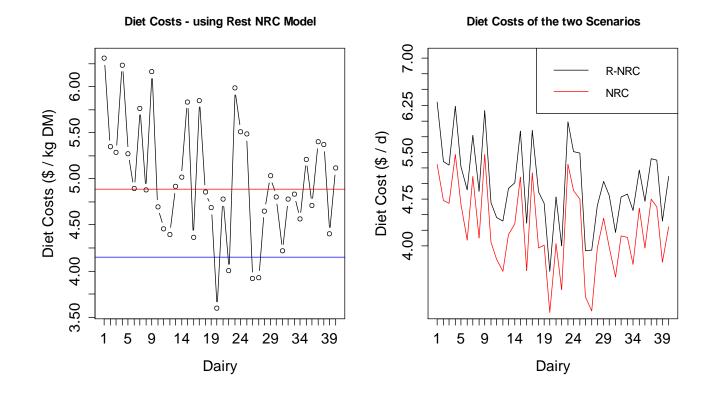

- Using the NRC recommendations with no restrictions caused an increase in total methane emissions of 9.23%
- diets were not practical. E.g. (% DM) 11 % soybean meal, 34% tomatoes, 50% grass silage, and 5% whey.

Results – Scenario 1 vs 2


Comparison of predicted current emissions in 40 CA dairies (red dotted line) compared to NRC based diets (black solid line)

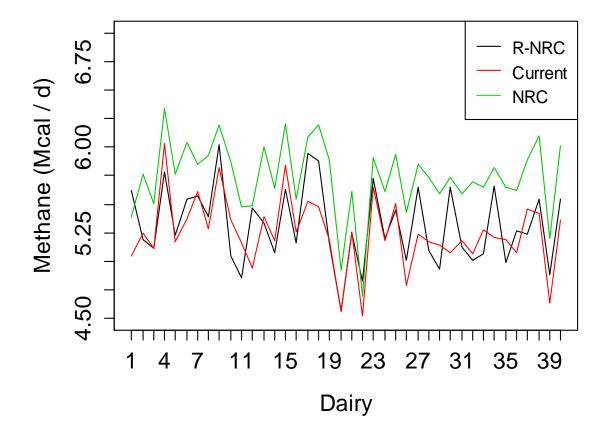
Results– Scenario 2 (costs)

MODELING SUSTAINABLE AGRICULTURE at

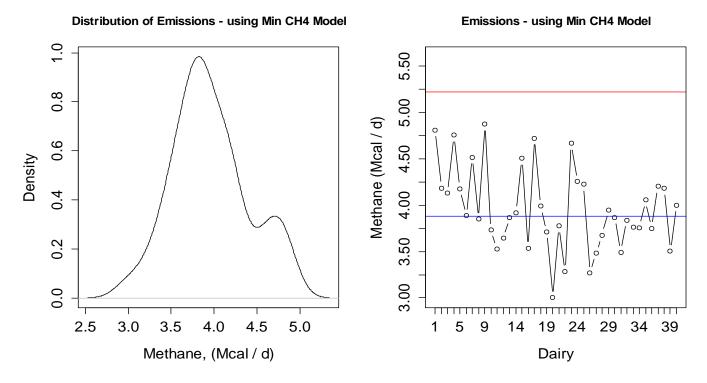

Results – Scenario 3

- Using the NRC recommendations with restrictions caused an increase in total methane emissions of 1.24% compared to current
- Diets were practical. E.g. (% DM) 20% corn silage, 10% DDG, 40% grass silage, 3% molasses, 3% rice bran, 12% soybean meal, 10% tomatoes, 1% whey, 1% mineral supplement

MODELING SUSTAINABLE AGRICULTURE at UCDAVI

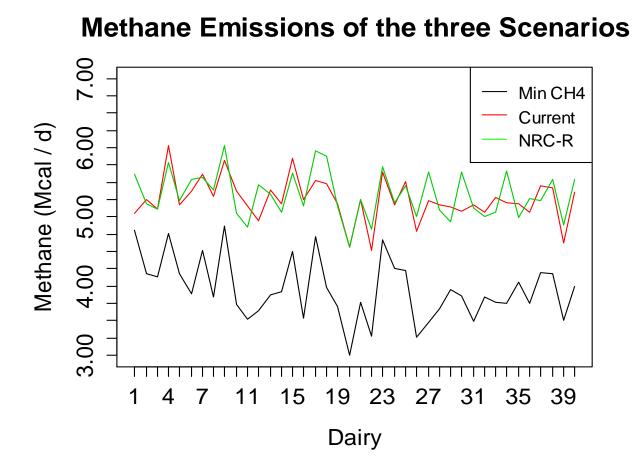

Results – Scenario 2 vs 3 (costs)

 Using the NRC recommendations with restrictions caused an increase in diet costs of about 16% compared to no restrictions


Results – Scenario 1 vs 2 vs 3

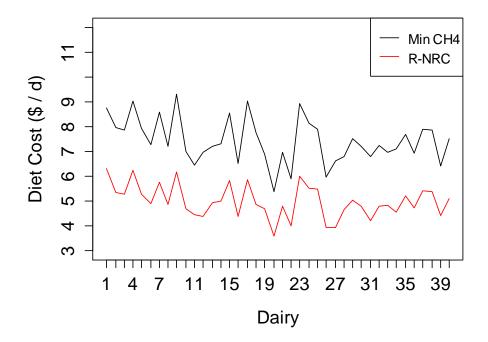
Methane Emissions of the three Scenarios

MODELING SUSTAINABLE AGRICULTURE at UCDA


Results – Scenario 4

- Using the minimized methane model with restrictions caused an decrease in total methane emissions of 24% compared to current
- Diets were practical. E.g. (% DM) 40 % alfalfa silage, 8% bakery waste, 9% canola, 26% ground flaked corn, 15% soybean meal, 1% whey, 1% mineral supplement

MODELING SUSTAINABLE AGRICULTURE at UCDAVIS


Results– Scenario 1 vs 3 vs 4

MODELING SUSTAINABLE AGRICULTURE at UC

Results- Scenario 3 vs 4 (costs)

Diet Costs of two Scenarios

 Diets formulated to minimize methane emissions increased costs by an average of 49%

Further Work

- Multi-criteria LP to reduce methane AND cost
 - Cap and trade?
 - Shadow prices
- Specific agents (monensin)
 - Include recent work (in press, JDS)
- Estimate costs of current diets
- Suggestions welcome

MODELING SUSTAINABLE AGRICULTURE at