Measuring and modeling spatial
variability of soil C

Sasha Kravchenko
Crop & Soil Sciences

Michigan State University




- = Soll Cis spatially variable at a variety of
% scales reflecting variability in soil forming
factors (topography, parent materials,
vegetation, etc.)

= Changes in land use or land management
conducted across diverse landscapes
result in spatially variable soil C responses
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Example: =

KBS-LTER
Established in 1988
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Tillage + chemical inputs (CT) Pop,a T
4 No-till + chemical inputs (NT) , .
Tillage + organic with cover crops
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changes in soil C

| » Outcome variable: Landform { Upperslope

« . ; Valley
% « Potential explanatory variables

— Elevation

— Slope

— Wetness index

— Curvature
— Flow accumulation

Upperslope
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Differences in C content

20-30 cm depth
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Senthilkumar, S., A. N. Kravchenko, and G.P. Robertson. 2009. Topography influences management
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system effects on total soil carbon and nltrogen Soil Sci. Soc. Am. J 73 2059—2067
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Hao, X. and A.N. Kravchenko. 2007. Management practice effects on surface total carbon:

Differences along a textural gradient. Agronomy J. 99:18-26
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= Land use/land management changes

that reduce soil disturbance lead to >
: formation of stronger spatial patterns ¥
< insoil C distribution across diverse
terrain




Characterlzatlon of spatlal varlablllty
patterns with geostatistical tools
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Comparing spatial variability patterns

| » 0-5 cm depth
ot
% Sample variograms and variogram models for total C ¢ CT
content — ¢ NT
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Kravchenko, A.N., G.P. Robertson, X.Hao, and D.G. Bullock. 2006. Management practice effects on
surface total carbon: Differences in spatial variability patterns. Agronomy J. 98: 1559-1568 b
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Comparing spatial variability patterns

e 20-30 cm depth

% Sample variograms for total C content

6 - ¢CT
CT-cover
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| Senthilkumar, S., A. N. Kravchenko, and G.P. Robertson. 2009. Topography influences management
b system effects on total soil carbon and nitrogen. Soil Sci. Soc. Am. J 73: 2059-2067
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An illustration
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 Compare the difference between

conventional (e.g., CT) and conservational

(e.g., C

e Let’s say, the true differences in C

-cover) managements.

between them is:
— 0.2 g/kg at an eroded knoll

— 0.7 g/kg at a flat area (perfect for an
experiment)

— 1.2 g/kg at a depression
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Our prediction Is 0.7 g/kg change

a * Field for which the average change needs

to be calculated:
mhange =0.7

g/kg

b 1/3 flat

1/3 depression
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Our prediction Is 0.7 g/kg change

* Field for which the average change needs
to be calculated:

lS."'

g/kg

mhange =1.1

8/10 depression 1/10 fla
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Suggestions

Spatial variability should be accounted for
In all large scale assesments.

Important to know — what are the leading
factors driving varability in a given
landscape”?

Be able to quantitatively describe the
relationship between them and the soil C

Use those guantitative descriptions In
large scale assesments.
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How many samples are needed?

If no statistically significant I
differences are found what does it ?
|

‘Q mean?

Does it mean that the studied e
treatments are mdeed not ﬁ
different from each other for all

practical considerations? ? |
Or does it just mean that the

practically significant differences are
in fact present but the number of
samples was too small to detect them?

5

The only way to tell is to do
power analysis!
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(r1ven varlabilty of the shadied data and experonerd al sethngs (1.2, bng-tenm ECED
experntert with & wpleatons) howr many sub-samples should have beentaken mordertobe ableto detect as

] statistralby sizndficadt a 10%4% or S0 or 100%% merease m C concertratiom with a certam probabilty (poarer) (say,
AT
E.z, if the difference m © concentrations between CT
< atd MT at 50-100 cm depih wras 10°%, several —
&} hundre d sub-samples would be necessary to obtain More than 10 sub-samples
< — statistically significant result. per each plot would be
ﬂ 1000 needed to detect a 500
W difference.
£
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~ Hypothesized change in total C concentration
; Kravchenko, A.N., and G.P. Robertson. 2009. How many replications are needed to
,»4 assess deep 30|I C stocks? (|n press SO|I Sci. Soc Am Journal)
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(r1ven vanabilty of the studied data and experonerntal sethngs (1.6, bng-term ECED expernnert wth &
repheatims) howr many sub-sanples should have beentaken moorder to be ableto detect as stabstralby signaficad a S0
mecrease 1 concertratym with a certan probabalihy [ powrer] (say, F0%:07 Or what 15 the probability that a 50%% change wall

be detected m the LTEE experivert (ECED sthadywanth & replications and 5 subsamples)?

If a 50% change occmrred at 0-10 cm depth and C stocks ondy
from 0-10 cm are caleulated and analyzed — 2 sub-samples per

Probability of getting statistical
significant result, %o
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plot would be sufficient. _

~

n-100

surfaice

Layer only analysis

i T
If a 50% change occurred at 0-10 cm depth bt C stocks

from the entire 0-100 cm profile are calculated and

ahalyzed — 23 sub-saraples per plot would be needed. .

n-==100

n-=-==100

n-=-==100
Middle Deep sSmface | Middle Deep

Whole profile analysis

F D R EF R ¥~

T P Y




"; Accountlng for spatlal correlatlon
will reduce the sampling costs

* A simulated RCBD experiemnt —sampling
points and blocks
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Kravchenko, A.N., G. P. Robertson, S.S. Snapp, and A.J.M. Smucker. 2006. Using
satlal varlablllty |nformat|on for |m roved estlmates of 50|I carbon. Agronomy J.
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» Sample variogram and variogram model for the
C data — typically observed strong spatial
correlation
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= « Minimal statistically significant difference
that can be detected using classical and
spatially corelated data analyses
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= How to account for
spatial variability with a
reasonable effort?

= What are the feasible
| options for obtaining
them?

= Digital elevation models
= Areal photographs

= Sattelite images

* NIR on-the-go systems
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Soil C map for Great Lakes Bioenergy Research
experimental site — KBS, M|
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15 m resolution 30 m resolution 30 m at large area

| Huang, X., S. Senthilkumar, A. Kravchenko, K. Thelen, and J. Qi. 2007. Total carbon mapping in glacial till soi s.
usmg Near Infrared Spectroscopy, Landsat Imagery, and topographlcal mformatlon Geoderma 141:34- 42| -
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Sampling Layout
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-100 samples /replin
using core sampler
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B Agnal Photograph

® Acrial Photograph + Topography
B NIE spectra

B NIR spectra + Topography




Suggestions

Systematic/stratified sampling with random
components for short distance variations —
optimal configurations can be obtained In
advance

Re-sampling Is strongly recommended

Sampling requirements calculated based on the
ad-hoc power analysis — optimal numbers of
samples for a variety of scenarios

Spatial information should be used In the data
analyses (and in sample size calculations) —
potential big reduction in sample numbers
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Sampling Layout
(Poplar)
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