Pasture Management for Carbon and Livestock Methane and Nitrous Oxide

Daniel L. Martino
daniel.martino@carbosur.com.uy

Chicago - 23 April 2010

Technical Working Group on Agricultural Greenhouse Gases (T-AGG) Expert Meeting Session on International Agricultural Mitigation Opportunities
Livestock Production and GHG Emissions

In spite of relatively similar levels of production of meat and milk, GHG emissions from livestock are much higher in developing than in developed regions

- Enteric: 150% higher
- N$_2$O PRP: 90% higher
- Manure: 10% lower
- LULUCF emissions and biomass burning were not considered. These are most significant in developing regions
Two different, complementary strategies

- **Already efficient systems** (mostly in developed regions)
 - Limited options for mitigation based on reducing animal population
 - Focus on research (e.g., New Zealand’s PGgRc) aiming at reducing emissions per animal (and per unit product).
 - Need to consider land use emissions associated with production of feed.

- **Less efficient systems** (mostly in developing regions)
 - Intensification of pastoral systems provides the best opportunities (large area of grassland). Adoption of mixed crop/livestock systems in cropland would also be effective.
 - Rapid implementation is possible, synergies with adaptation, food security and SD.
 - Focus on integral approach (AFOLU) including consideration of avoidance of deforestation, C sequestration in soils and N₂O to reduce emissions per unit product
Productivity and GHG Emissions per unit product (milk)

Consideration of N₂O emissions from manure magnify the differences between regions.

Graphs are based on the following sources:
- IPCC tier 1 default emission factors for enteric fermentation for different regions and their underlying assumptions
- US-EPA 2005
- FAO Fertilizers Statistics

T-AGG Experts Meeting – Chicago – 23 April 2010
Beef cattle: Emissions per unit product

<table>
<thead>
<tr>
<th>System</th>
<th>GHG emissions (kg CO₂-eq/kg CW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>High-quality pasture (NZ)</td>
<td>12-18</td>
</tr>
<tr>
<td>Grain-fed, Medium-quality pasture</td>
<td>20-40</td>
</tr>
<tr>
<td>Poor quality pasture (tropical)</td>
<td>40-100</td>
</tr>
<tr>
<td>Tropical pasture + recent deforestation</td>
<td>>>100</td>
</tr>
<tr>
<td>Global average</td>
<td>>40?</td>
</tr>
</tbody>
</table>

Substitution of high carbon intensity systems (extensive grazing of grassland, particularly on recently deforested land) by more productive systems would enable large emission reductions.

Adoption of mixed livestock-crop systems (e.g., crop and pasture rotations) may also be very effective in reducing emissions.
Opportunities for reducing emissions through pasture improvement and/or adoption of mixed systems

• Meat (and, to a lesser extent, dairy) production is based on low-quality pastures in large areas.

• Adoption of pasture improvement on those areas would bring about:
 – Reduced methane CH\textsubscript{4} and PRP soil N\textsubscript{2}O emissions per unit product (somewhat offset by small increases in N\textsubscript{2}O from soils if legumes followed by soil tillage or N fertilizers are used).
 – Increased CO\textsubscript{2} removals (sequestration in soils)
 – Reduced emissions from deforestation (where it is driven by expansion of grazing areas).

• Associated benefits
 – Improved land productivity and resilience, soil conservation
 – Optimization of land use, risk management through diversification
 – Reduced emissions from deforestation (where it is driven by expansion of grazing areas or by procurement of timber) and reduced pressure on land.
Productivity and CH₄ Emissions from Enteric Fermentation

Small increases in productivity may yield substantial reduction in emissions per unit product.

Graphs are based on IPCC tier 1 default emission factors for enteric fermentation for different regions and their underlying assumptions.