

Offset Opportunities for Row–Crop Agriculture in the Midwest: Comments on an Nitrous Oxide Reduction Protocol

Neville Millar

W.K. Kellogg Biological Station, Michigan State University

Queensland University of Technology Brisbane Australia

Thursday, April 22, 2010: Chicago Embassy Suites, River North Ballroom C & D

Objectives

Investigate two emissions factor based approaches:

Tier 1 based upon IPCC default (1.0 %) Tier 2 based upon regionally derived field data

Examine the criteria for prioritization of agricultural activities that target GHG mitigation, using as an example, a preliminary approach for a Midwest, row-crop N_2O reduction protocol

Protocol Overview

- Five sites (8 site years)
- Corn soybean rotations
- Conventional tillage
- Six N fertilizer (urea) rates
- Static chamber methodology

	Rep 1	Rep 2	Rep 3	Rep 4
Nitrogen Rate (kg N ha 1)				
Ť	0	135	180	45
	90	225	225	0
E	180	180	90	90
35	225	0	45	135
	135	45	0	225
Ļ	45	90	135	180
۔ 60 m				

- Empirical field data
- Biological basis threshold response
- N fertilizer rate proxy for N₂O emissions
- Regional (Tier 2) emissions factor
- GHG credits from reduction in N rate

Hoben et al. 2010. Global Change Biology, in review.

Protocol Evaluation

Physical and Economic Potential – High/Med/Low?

- Net GHG/ha, total ha available, and over what time frame
- Costs for management shifts (opportunity costs, capital costs, ...)

Scientific Certainty – High/Med/Low?

- Is information (measurement and modeling) sufficient by practice, crop, and geography?
- Does directional certainty exist for net GHGs?

Possible Barriers – Addressable?

- •Yield decline (affects production elsewhere and economic impact)
- •Economic cost break-even price too high?
- •Technical barriers monitoring, adoption, or production barriers
- •Social barriers or negative community or farmer impacts
- •Negative ecological impact
- •Life cycle analysis significant negative upstream or downstream GHGs

Implementation & Accounting Barriers – Addressable?

- Measurement, monitoring and verification Are there good methods for measuring or modeling GHG outcomes on a project scale? and for verifying projects?
- Additionality Can it be assessed sufficiently?
- Baseline Are there viable approaches for setting baseline? Sufficient data?
- Leakage risk Is there leakage risk (life cycle analysis)? Can it be accounted for?
- Reversal risk Can risk be estimated? Can it be accounted for? Is it too high?

5

Significant Cobenefits?

May consider activity with lower GHG potential if it provides other social, economic or environmental cobenefits

3

1 Physical and Economic Potential – High/Med/Low? Net GHG/ha, total ha available, and over what time frame Costs for management shifts (opportunity costs, capital costs, ...) Potential Impact of protocol Linear Tier 1: Reduction (139 \rightarrow 118 lb N/ac) ~ 0.05 tons CO₂e a⁻¹ yr⁻¹ Non–Linear tier 2: Reduction (225 \rightarrow 190 lb N/ac) ~ 0.6 tons CO₂e a⁻¹ yr⁻¹ CCX Conservation Tillage Practice = 0.4 - 0.6 tons CO₂e a⁻¹ yr⁻¹ 86 million acres of US farmland planted to corn in 2009 (USDA) Potential reduction of 52 million tons CO₂e a⁻¹ yr⁻¹

Millar et al. 2010. Mitigation and Adaptation Strategies for Global Change

Scientific Certainty – High/Med/Low?

- Is information (measurement and modeling) sufficient by practice, crop, and geography?
- Does directional certainty exist for net GHGs?

N₂O reduction protocol

- N₂O emissions from corn soybean rotations and winter wheat
- Multiple year, site, and measurements
- Less reactive N less likelihood for increased N₂O emissions
- High GWP unlikely that 'positive' impact overcome by increases in other GHG emissions or reduced C sequestration directional certainty exists?

More empirical data ?

- Other crops required (focus on representative regional crops/rotations ?)
- Other practices required (focus on representative, regional BMPs ?)
- Other regions/states required (North Central, Northeast, South, West)

Possible Barriers – Addressable?

- Yield decline (affects production elsewhere and economic impact)
- Economic cost break-even price too high?
- Technical barriers monitoring, adoption, or production barriers
- Social barriers or negative community or farmer impacts
- Negative ecological impact
- Life cycle analysis significant negative upstream or downstream GHGs

Maximum Return To Nitrogen (MRTN) approach (regional economic optimum)

Implementation & Accounting Barriers – Addressable?

- Measurement, monitoring and verification Are there good methods for measuring or modeling GHG outcomes on a project scale? and for verifying projects?
- Additionality Can it be assessed sufficiently?
- Baseline Are there viable approaches for setting baseline? Sufficient data?
- Leakage risk Is there leakage risk (life cycle analysis)? Can it be accounted for?
- Reversal risk Can risk be estimated? Can it be accounted for? Is it too high?
- Crop 'test strips'

- Soil and plant testing
- Precision agriculture techniques
- Producer management records
- Offset Aggregators
- Validation and Verification
- Desk reviews
- Site visits
- Non-compliance penalties

Implementation & Accounting Barriers – Addressable?

- Measurement, monitoring and verification Are there good methods for measuring or modeling GHG outcomes on a project scale? and for verifying projects?
- Additionality Can it be assessed sufficiently?
- Baseline Are there viable approaches for setting baseline? Sufficient data?
- Leakage risk Is there leakage risk (life cycle analysis)? Can it be accounted for?
- Reversal risk Can risk be estimated? Can it be accounted for? Is it too high?
- Baseline

Conservative approach - Verifiable management records

Additionality

Would project occur without carbon credit funding ? Barriers (Regulatory, Common Practice, Technical, Social etc)

• Permanence / Reversal

Avoided N₂O emissions occur immediately - irreversible and permanent Reserve / buffer pools – non-permanence risk analysis Producer aggregation – collective persistence of credits

Leakage

Land maintained for production for many years prior to project implementation MRTN approach: no yield reductions, no yield compensation, no additional N use

5

Significant Cobenefits?

May consider activity with lower GHG potential if it provides other social, economic or environmental cobenefits

- Reduced potential for nitrate leaching and run-off?
- Reduced fertilizer production upstream ?
- Integrate with BMPs

- Community support
- Conserve biodiversity
- Promote innovative project design
- Mitigate investor risk
- Increase funding opportunities for project developers

Comments

Protocol Attributes

- Scientifically robust
- Environmental integrity
- Transparent to all stakeholders
- Cost-effective

Protocol Provisions

- Negate / Minimize Productivity Loss
- Economic Incentive (MRTN rate)
- Environmental Incentive (N₂O reduction)
- Fungible Emission Reduction Credits

