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ABSTRACT	
  

The study aimed to determine baseline methane emissions from California dairies and assess mitigation 
strategies. Two optimization models based on linear programming were developed to formulate minimum 
cost and minimum methane diets without compromising production. A third model uses weighted goal 
programming for joint minimization of dietary costs and emissions. The economic and environmental 
impact of using a specific agent (monensin) was also assessed. Enteric emissions ranged from 18.8 to 
25.1 MJ/d. Dairies that used corn/alfalfa-based forages and cows with higher intakes and production were 
low emitters. The cost per unit emissions reduction ranged from $5.02 to $20.1/kg methane ($239–  
$956/tonne CO2 equivalent) for a 1% to 25% reduction of total emissions. Various levels of trade-offs 
between cost and emissions reduction are possible. Up to a 9.4% reduction in CH4 emissions was possible 
with monensin (costs ranged from $3 to $26/kg CH4). Mitigation options need to be tested in a 
commercial setting before recommendation for use.  
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INTRODUCTION	
  
Methane (CH4) emissions from livestock production are a substantial source of greenhouse gas (GHG) 
worldwide. The livestock contribution to global anthropogenic GHG emissions ranges from 7% to 18%, 
depending on accounting approaches and scope (Hristov et al. 2013). According to estimates for the 
United States, in 2011 CH4 emissions from livestock enteric fermentation and manure management 
accounted for 23.4% and 8.9% of CH4 emissions from anthropogenic activities, respectively (EPA 2013). 
Life-cycle assessments of various systems have shown that on-farm emissions represent the largest 
contribution to the carbon footprint of dairy or beef supply chains (see, e.g., Thoma et al. 2013; Figure 1). 
The largest contributor to on-farm emissions is CH4 from enteric rumino-reticular fermentation 
(Hagemann et al. 2011). In the United States, these emissions represent 67.5% of livestock CH4 emissions 
(enteric fermentation plus manure management; see EPA 2011). However, according to California Air 
Resources Board (CARB), enteric CH4 emissions represent about 47% of livestock-related emissions in 
California (CARB 2011). Addressing both enteric fermentation and manure management could reduce 
GHG emissions from California livestock production systems.  
 
Gerber et al. (2013) reviewed technical options for mitigating enteric CH4 emissions and showed that 
dietary manipulation could mitigate CH4 emissions from livestock. Some of the options from the review 
that are relevant to California include improving feed digestibility and use of highly digestible 
concentrates, dietary lipid supplementation, and ionophores such as monensin and tannins (possibly from 
grape pomace). For reduction of greenhouse gases in manure, Gerber et al. (2013) identified mitigation 
options such as low protein diets (to decrease nitrogen in manure), storage time reduction, aeration, and 
use of stacking and anaerobic digesters. In a companion report, Owen, Kebreab, and Silver (2014) 
provide a detailed analysis of GHG mitigation opportunities from manure management. The Economic 
and Technology Advancement Advisory Committee (ETAAC 2008) report suggested that feeding to 
National Research Council (NRC) guidelines to optimize efficiency could reduce enteric CH4 emissions. 
The report estimated that CH4 emissions could be reduced up to 30%: 16% from NRC recommended 
feeding practices, 11% from specific agents, and 3% from long-term management and breeding. 
 
Figure	
  1.	
  Supply	
  Chain	
  Contribution	
  to	
  the	
  Carbon	
  Footprint	
  of	
  “Generic	
  Milk”	
  in	
  the	
  United	
  States	
  

 
Source:	
  Thomas	
  et	
  al	
  (2013).	
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In 2012, California had about 5.35 million cattle: 1.78 million milk cows and 0.6 million beef cows 
(CDFA 2012). The state’s cattle numbers have increased exponentially since the 1950s, but there was a 
small decline in 2009 (von Keyserlingk et al. 2013; Figure 2). However, cattle numbers in California 
appear to be rebounding; the 2012 figures represent a 2.9% increase over 2011 estimates (CDFA 2012). 
Therefore, emissions from livestock operations in California are a substantial source of greenhouse gases 
in the United States, and the examination of economic and environmental aspects of CH4 mitigation 
strategies are necessary for the establishment of a sustainable livestock industry.  
 
Figure	
  2.	
  Changes	
  (Percentage	
  Change	
  Relative	
  to	
  1950)	
  in	
  Total	
  Milk	
  Produced,	
  Milk	
  Production	
  per	
  
Cow,	
  Total	
  Number	
  of	
  Dairy	
  Cows	
  and	
  Dairies,	
  and	
  Methane	
  Produced	
  per	
  Kilogram	
  of	
  Milk	
  in	
  the	
  
California	
  Dairy	
  Industry	
  between	
  1950	
  and	
  2010	
  

 
Source:	
  von	
  Keyserlingk	
  et	
  al.	
  (2013).	
  

 
Due to cost considerations associated with direct emissions measurements, mathematical models of 
various complexity levels have been used to predict emissions from enteric fermentation (e.g., IPCC 
2007; Moraes et al. 2013). However, some widely used models, such as that developed by the 
Intergovernmental Panel on Climate Change (IPCC 2007), cannot be used to assess mitigation options 
because they do not include dietary variables that influence emissions. Mechanistic models may be 
applicable, but due to high input requirements, they may not be applicable in practical assessment. 
Therefore, models that use dietary variables and require readily available inputs may be better suited for 
practical assessment of mitigation options. Optimization techniques have been used to model milk 
production system for decades (e.g., St-Pierre and Harvey 1986; Tedeschi, Fox, Chase, and Wang 2000) 
and in a recent study, a linear programming (LP) optimization framework was developed to assess the 
trade-offs between dietary costs and environmental impacts of livestock production and to estimate CH4 
mitigation costs through shadow prices (Moraes et al. 2012). Shadow prices of CH4 emissions mitigation 
were derived in a hypothetical dairy herd, suggesting that substantial reductions of CH4 emissions from 
dietary manipulation may be extremely expensive. Nevertheless, a framework for the joint minimization 
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of CH4 emissions and dietary costs, and most importantly, for the identification of the set of possible diets 
with various trade-off levels between emissions and cost is lacking from the literature.  
 
The objectives of this report are to (1) determine the baseline emissions in representative California 
dairies, (2) quantify changes in CH4 emissions and dietary costs using LP techniques from the baseline 
scenario when adopting either of two strategies (one to minimize dietary costs and one to minimize CH4 
emissions), (3) propose a programming model that combines both strategies and identifies compromises 
between minimizing dietary costs on the one hand and minimizing CH4 emissions on the other hand, and 
(4) examine potential CH4 mitigation through supplementation with an ionophore. 
	
  
MATERIALS	
  AND	
  METHODS	
  
The study was conducted in two sequential parts. First, a large database of CH4 emissions (Wilkerson and 
Casper 1995) was used to develop prediction models for estimating enteric CH4 emissions from 
California dairy herds. Second, data on dietary composition, feed intake, and milk production from 40 
dairies in the California Central Valley (Castillo, St-Pierre, Silva del Rio, and Weiss 2013) was used to 
develop a series of optimization models.  
	
  
Prediction	
  of	
  Methane	
  Emissions	
  from	
  California	
  Dairy	
  Herds	
  
A large database of CH4 emissions in Northern American lactating cows (Wilkerson and Casper 1995) 
was used to fit a random regression model for predicting enteric CH4 emissions from lactating cows. The 
database was composed of 1,111 energy balance records from 40 studies conducted from 1963 to 1995. 
Records represent at least four consecutive days of lactating cows in respiration chambers and were 
collected at the former USDA Energy Metabolism Unit at Beltsville, Maryland. The random regression 
model can be described as: 

1 2y = Xβ+Z α+Z ξ + ε         [1] 

where y is the vector of n CH4 records X, Z1 and Z2 are design matrices relating elements of y to elements 
of β, α, and ξ, respectively. β is the vector of p regression coefficients [consisting of an intercept and the 
linear effects of dry matter intake (DMI), dietary proportions of neutral detergent fiber (NDF), and ether 
extract (EE) as suggested by Moraes et al. (2013)], α is the vector of p × na animal random regression 
coefficients, ξ is the vector of p × ns study random regression coefficients, and ε is the vector of errors. In 
this notation, na and ns denote the number of animals and studies, respectively. It was assumed that α, ξ, 
and ε are independent and distributed as N ,

an
⊗ 1α ~ (0 I G ) , N ,

sn
⊗ 2ξ ~ (0 I G )and 2N , nσε ~ (0 I ) , 

where G1 and G2 are unstructured variance covariance matrices of order p, I denotes the identity matrix, 
⊗ is the Kronecker product, and σ2 is the error variance. The prediction model was fitted under a 

Bayesian framework for which estimation was based on Markov Chain Monte Carlo methods, as 
described in Moraes et al. (2013). Emissions were predicted with the information (dry matter intake and 
dietary composition) from the baseline scenario (Castillo, St-Pierre, Silva del Rio, and Weiss 2013) using 
the vector of regression coefficients estimates (i.e., $ $=y Xβ ), where $y  is the vector of predictions,X is 

the design matrix containing dry matter intake and dietary NDF and EE proportions, and $β is the vector 
of parameter estimates. This prediction model was also used to predict emissions using the solutions of 
the optimization models described below. 
 
Optimization	
  Modeling	
  
Initially, CH4 emissions were estimated for the 40 dairies from Castillo, St-Pierre, Silva del Rio, and 
Weiss (2013) using the prediction model described above, and predictions were used to construct a 
baseline scenario for CH4 emissions and dietary costs. Changes in emitted CH4 and dietary costs when 
National Research Council (NRC 2001) guidelines were adopted for diet formulation were examined 
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through a series of LP models. A comprehensive description of the implementation of the NRC (2001) 
model within a LP diet optimization framework is given by Moraes et al. (2012). Two major LP 
frameworks were constructed: a least-cost diet model and a minimum CH4 model with the objective of 
examining changes and trade-offs of optimizations with distinct goals. Shadow prices were calculated 
under the least-cost diet model for which CH4 was restricted through the implementation of a model 
constraint (as described in Moraes et al. 2012). These prices were used to estimate marginal costs of CH4 
emissions mitigation. Finally, a weighted goal programming model (Romero and Rehman 1989) is 
proposed for the joint minimization of diet costs and emissions. The goal programming framework 
combines the two LP models previously implemented through identification of the set of solutions with 
various levels of trade-offs between diet costs and CH4 emissions. All optimization models were solved in 
the lpSolve package of the open source statistical software environment R (Buttrey 2005). That package 
offers an attractive software environment for implementing optimization models because it is freely 
available and provides tools in R such as plots and statistical analysis capabilities. 
 
Least-­‐Cost	
  Diet	
  Model	
  
The least-cost diet model was developed to identify least-cost diets that supply nutrients determined by 
the NRC guidelines (NRC 2001). Feeds used for diet optimization were from Castillo, St-Pierre, Silva del 
Rio, and Weiss (2013). Milk production and supplementary animal information from Castillo, St-Pierre, 
Silva del Rio, and Weiss (2013) were used within the NRC (2001) model for the calculation of the 
nutrient requirements as described in Moraes et al. (2012). Additional constraints were imposed on the 
NRC (2001) guidelines to ensure the formulation of feasible diets that would be readily accepted by 
producers. For example, some feeds in diets had maximum inclusion limits, and the proportion of dietary 
forage was limited from 40% to 60% (Table 1). Feed prices were collected locally in California and 
represent costs from February to March 2013 (Table 1), and feeds’ nutrient composition was based on 
NRC (2001). The model was solved individually for each dairy and can be described by: 
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      [2] 

where z1 is the objective function value ($); cj is the price of feed j ($/kg DM); n represents the number of 
available feeds; xj is the amount of feed j (kg DM); aij is the content of nutrient i (i = 1, …, m) in feed j 
(MJ, g or mg/kg DM); bi is the daily animal requirement of nutrient i (MJ, g or mg); d is the daily animal 
maximum intake capacity (kg DM), which was set at the DMI intake from the baseline scenario (DMI 
must be smaller than or equal to the baseline scenario); ui is the minimum dietary proportion of nutrient i; 
pij is the proportion of nutrient i (i = m + 1, …, m + r) in feed j (kg/kg DM); and vi is the maximum 
dietary proportion of nutrient i. The dietary proportion nutrient constraint was linearized, so the model 
could be solved by LP techniques through multiplication of the equation denominator by its right-hand 
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side. Such linear form of the constraint is equivalent to the original non-linear form and will generate 
same LP solutions with the advantage of direct interpretation of dual values. In this report, dietary NDF 
percentage was constrained to be greater than 25%, and dietary EE was constrained to be smaller than 
7%, as suggested by NRC (2001). 
 
Table	
  1.	
  Dietary	
  Feed	
  Upper	
  Limits	
  and	
  Feed	
  Costs	
  
Feed	
   Limita	
   Costb	
  
Alfalfa	
  silage	
   No	
  limit	
   0.30	
  
Alfalfa	
  hay	
   No	
  limit	
   0.29	
  
Almond	
  hulls	
   0.10	
   0.20	
  
Bakery	
  waste	
   0.10	
   0.42	
  
Barley	
  grain	
   No	
  limit	
   0.41	
  
Barley	
  silage	
   No	
  limit	
   0.16	
  
Canola	
  meal	
   0.10	
   0.47	
  
Corn	
  gluten	
  feed	
   0.10	
   0.36	
  
Corn	
  grain	
  -­‐	
  flaked	
   No	
  limit	
   0.43	
  
Corn	
  silage	
   No	
  limit	
   0.21	
  
Whole	
  cotton	
  seeds	
   No	
  limit	
   0.44	
  
Corn	
  dried	
  distillers	
  grain	
   0.10	
   0.39	
  
Grass	
  silage	
   No	
  limit	
   0.13	
  
Molasses	
   0.03	
   0.27	
  
Oats	
  hay	
   No	
  limit	
   0.19	
  
Oats	
  Silage	
   No	
  limit	
   0.16	
  
Rice	
  Bran	
   0.05	
   0.30	
  
Soybean	
  meal	
   0.15	
   0.58	
  
Sugar	
  beet	
  pulp	
   0.15	
   0.36	
  
Tomatoes	
   0.1	
   0.12	
  
Wheat	
  hay	
   No	
  limit	
   0.25	
  
Wheat	
  silage	
   No	
  limit	
   0.17	
  
Whey	
   0.01	
   0.17	
  
Sodium	
  Bicarbonate	
   No	
  limit	
   0.34	
  
Sodium	
  Chloride	
   No	
  limit	
   0.14	
  
Mineral	
  premix	
  Ac	
   No	
  limit	
   1.05	
  
Mineral	
  premix	
  Bd	
   No	
  limit	
   0.76	
  
Mineral	
  premix	
  Ce	
   No	
  limit	
   7.15	
  

aIn	
  kg/kg	
  of	
  diet	
  DM.	
  
bIn	
  $/kg	
  DM.	
  Collected	
  locally	
  in	
  California	
  –	
  From	
  February	
  and	
  March	
  2013.	
  
cContained	
  15%	
  Ca	
  and	
  21%	
  P.	
  
dContained	
  22.5%	
  S,	
  18%	
  K,	
  and	
  11.5%	
  Mg.	
  
eContained	
  3.75%	
  Zn,	
  3%	
  Mn,	
  1.25%	
  Cu,	
  and	
  0.25%	
  Co.	
  
	
  
Minimum	
  Methane	
  Model	
  
The minimum CH4 model was developed to formulate diets that minimize CH4 emissions while supplying 
nutrients required to maintain the milk production level from the Castillo, St-Pierre, Silva del Rio, and 
Weiss (2013) data. The model was structured similarly to the least-cost diet model with the same set of 
constraints specified. The difference between the least-cost diet and the minimum CH4 models is that the 
objective function for the latter can be described as:  
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 2
1

min
n

j j
j

z g x
=

=∑          [3] 

where z2 is the objective function value (CH4 emission factor units), and gj is the CH4 emissions factor 
unit of feed j (Emission factor units/kg DM), calculated as a linear combination of NDF and EE 
proportions of each feed for which the regression coefficients of Eq. [1] are the combination weights. 

More specifically, $T
jjg = s β , where superscript T denotes transpose, ( )T1, ,j j jNDF EE=s , NDFj and 

EEj are the NDF and EE percentages of feed j, and $β  is the vector of estimates of the regression 
coefficients from Eq. [1]. 
	
  
Goal	
  Programming	
  Model	
  
The two previously described LP models have distinct goals: minimize diet costs and CH4 emissions, 
which may be potentially conflicting. Consequently, there is a trade-off, i.e., minimizing diet costs may 
result in diets with increased CH4 emissions, and minimizing CH4 emissions may result in substantially 
expensive diets, as discussed in Moraes et al. (2012). To identify solutions for which there is a balance 
between achievements of individual goals, a weighted-goal programming model that combines the two 
previously described LP models is proposed. Goal programming belongs to the multiobjective 
optimization family of models that are often utilized when the decision maker is aimed at simultaneously 
optimizing more than one criteria of the system. Further, the weighted-goal programming model is a 
special case of the goal programming model that weighs the objective function to establish trade-offs 
between achievement of specific goals. The weighted-goal programming model uses total requirements 
from the 40 dairies in the construction of the feasible region in a single optimization and can be described 
by: 

2
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1 1 1
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2 2 2
1
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        [4] 

where z3 is the goal programming objective function value, wq is the weight of the qth goal (q = 1, 2, 
where goal 1 is to minimize cost and goal 2 is to minimize emissions), nq and pq are the negative and 
positive deviation variables for goal q, tq is the objective target value for goal q, x is the vector of feeds, F 
is the feasible set constrained by the technical constraints described in Eq. [2], and the other variables are 
the same as noted above. Further, objective target values were set as the objective function values from 
the two previously described LP models (i.e., t1 = z1 and t2 = z2) using the total nutrient requirements of 
the 40 dairies from Castillo, St-Pierre, Silva del Rio, and Weiss (2013). This model specification naturally 
accommodates the goal programming restriction nqpq = 0 (q = 1, 2). A grid of weights for which
2

1
1q

q
w

=

=∑ , as suggested by Jones and Tamiz (2010), was constructed to explore the set of efficient 

solutions. In essence, this grid created a factorial experiment with w1 and w2 varying from [1, 0] and [0, 1] 
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in increments of 0.01. At each one of the 101 loci, the model was solved and solutions were recorded for 
the construction of the set of solutions. In this grid specification, when w2 = 0, Eq. [4] produces the same 
solutions (in the diet formulation sense) as Eq. [2], and when w1 = 0, Eq. [4] produces the same solution 
as Eq. [3]. Diet cost and emissions target levels (t1 and t2) can be derived from field data of specific 
production systems and regulatory policies schemes or can be determined as a part of the optimization. If 
target values are known a priori, they should be used in model optimization. When no prior knowledge 
about target diet costs and emissions were available (as in this report), a method based on individual 
optimizations of each goal (i.e., t1 = z1 and t2 = z2) was used. 
	
  
RESULTS	
  AND	
  DISCUSSION	
  
Prediction	
  of	
  Methane	
  Emissions,	
  Dietary	
  Costs,	
  and	
  Linear	
  Programming	
  Models	
  
Baseline	
  Scenario	
  
The fitted model for predicting CH4 emissions was:  
 
CH4 (MJ/d) = - 1.285 (0.82) + 0.796 (0.03) × DMI (kg/d) + 0.157 (0.02) × NDF (% DM) - 0.219 (0.10) × 
EE (% DM)         [5] 
 
where values in parentheses are the standard errors. This prediction equation provides a mean square 
prediction error, when internally evaluated, of 3.08 MJ/d (or 18.1% of observed mean), which suggests 
that the prediction model used here has a greater predictive capacity than the models assessed by Ellis et 
al. (2010). Quantiles of predicted CH4 emissions for the Californian dairies are given in Table 2. Methane 
emissions ranged from 18.8 MJ/d to 25.1 MJ/d, with a median of 21.7 MJ/d, which is agreement with 
literature values of Holstein lactating cows (Wilkerson and Casper 1995). 
 
Table	
  2.	
  Predicted	
  Methane	
  Emissions	
  and	
  Dietary	
  Costs	
  in	
  the	
  Castillo,	
  St-­‐Pierre,	
  Silva	
  del	
  Rio,	
  and	
  
Weiss	
  (2013)	
  Baseline	
  Scenario,	
  Least-­‐Cost	
  Diet	
  Scenario,	
  and	
  Minimum	
  Methane	
  Scenario	
  in	
  40	
  
Dairies,	
  on	
  a	
  Cow	
  Basis	
  

	
   Methane	
  emissions	
  (MJ/d)a	
   	
   Diet	
  cost	
  ($/d)a	
  

Scenario	
   Median	
   10th	
  	
  
Qt.	
  

25th	
  
Qt.	
  

75th	
  	
  	
  	
  	
  	
  	
  
Qt.	
  

90th	
  
Qt.	
   Median	
   10th	
  	
  	
  

Qt.	
  
25th	
  	
  	
  	
  	
  
Qt.	
  

75th	
  
Qt.	
  

90th	
  
Qt.	
  

Castillo,	
  St-­‐Pierre,	
  
Silva	
  del	
  Rio,	
  and	
  
Weiss	
  (2013)	
  

	
  
	
  
21.7	
  

	
  
	
  

20.5	
  

	
  
	
  

21.3	
  

	
  
	
  
22.4	
  

2	
  
	
  

3.3	
  

	
  
	
  
7.8	
  

	
  
	
  
	
  	
  6.1	
  

	
  
	
  

7.2	
  

	
  
	
  

8.4	
  

	
  
	
  

8.6	
  
Least-­‐cost	
  diet	
   21.7	
   20.4	
   20.9	
   23.1	
   23.8	
   4.9	
   4.2	
   4.6	
   5.4	
   5.9	
  
Minimum	
  
methane	
  

	
  
16.4	
  

	
  
14.5	
  

	
  
15.7	
  

	
  
17.6	
  

	
  
19.4	
  

	
  
6.6	
  

	
  
5.6	
  

	
  
	
  	
  6.2	
  

	
  
7.3	
  

	
  
8.3	
  

a	
  Median,	
  10th,	
  25th,	
  75th,	
  90th	
  quantiles.	
  

Methane emissions in MJ/kg fat corrected milk (FCM) are presented in Figure 3 and ranged from 0.624 to 
1.02 MJ/kg FCM, with a median of 0.748 MJ/kg FCM. Furthermore, calculated dietary costs in the 
baseline dairies ranged from 4.38 to 8.89 $/d, with a median of 7.84 $/d, which is in close agreement with 
California average feed costs from the first quarter of 2013 (CDFA 2013). Examination of the baseline 
scenario shows that the ratio CH4 emissions/unit FCM varies considerably in the 40 dairies (Figure 3), 
suggesting that some dairies emit less CH4 per unit of produced milk.  
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Figure	
  3.	
  Predicted	
  Methane	
  Emissions	
  pre	
  Unit	
  of	
  Fat-­‐Corrected	
  Milk	
  (MJ	
  CH4/kg	
  FCM)	
  for	
  the	
  40	
  
Dairies	
  from	
  Castillo,	
  St-­‐Pierre,	
  Silva	
  del	
  Rio,	
  and	
  Weiss	
  (2013)	
  Data	
  

 
Note:	
  Dashed	
  horizontal	
  line	
  is	
  the	
  median.	
  

Four dairies in the lower 10th quantile can be considered low-CH4-emitting dairies (0.65 MJ/kg FCM). 
Dietary characteristics and animal responses were examined to identify production characteristics that 
may contribute to lower CH4 emissions in these four dairies, such reduced emissions level. The four 
dairies used corn silage and alfalfa hay as their main forage source. Three of these dairies also used oat 
silage as a forage source. The main concentrate sources in the four dairies were corn, barley, cotton seeds, 
canola, almond hulls, distillers’ dried grains, and soybean meal. In these dairies, the average DMI is 
greater than the data median intake (23.2 kg DM/d), and two of the dairies have a dietary EE proportion 
greater than the data median (4.41%). Dietary NDF percentages are above the median (34.5%) in two of 
the dairies. In these low-emitting dairies, daily milk production is above the 90th quantile (37.4 kg/d), and 
in three of the dairies, fat percentage proportions are also above the median (3.58%). Finally, the milk-to-
feed ratio (kg Milk/kg DMI) was above the 90th quantile (1.51 kg Milk/kg DMI) in all four dairies. 
Therefore, dairies that are more efficient in producing milk per unit of feed may have lower CH4 
emissions levels per unit of milk produced than low-producing dairies, a finding that is in agreement with 
Capper, Cady, and Bauman (2009) and Gerber et al. (2013). Specifically, if more efficient cows produce a 
larger amount of milk for a given amount of feed, they will have lower emissions per unit of milk because 
feed intake is the major driver of CH4 emissions. In fact, as Figure 2 shows, CH4 emissions in California 
since 1950 decreased 52% when calculated per product basis. This trend is due to a 200% increase in milk 
production but a just more than 100% increase in cow numbers (von Keyserlingk et al. 2013). 
 
Least-­‐Cost	
  Diet	
  and	
  Minimum	
  Methane	
  Scenarios	
  
Predicted CH4 emissions for the 40 dairies in baseline, least-cost diet, and minimum CH4 model scenarios 
are given in Table 2. Total CH4 emissions increased 0.94% for the least-cost diet scenario compared with 
the baseline scenario, suggesting that feeding according to the NRC guidelines would not reduce total 
CH4 emissions. As expected, total CH4 emissions decreased 23.61% in the minimum CH4 scenario 
compared with the baseline scenario and 24.32% compared with the least-cost diet scenario. Such 
changes in CH4 emissions were achieved through changes in dietary composition and dry matter intake.  
 
Increased dietary fat has been suggested as a CH4 mitigation tool by several studies (e.g., Martin, 
Morgavi, and Doreau 2010; Grainger and Beauchemin 2011) and this strategy was incorporated into the 
model structure through Eq.[1] because EE was one of the explanatory variables. Reducing the proportion 
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of dietary structural carbohydrates has also been shown to reduce emissions (Moe and Tyrrell 1979). 
Average dry matter intake decreased from 21.2 kg/d to 18.0 kg/d from the least-cost diet to the minimum 
CH4 scenario. Moreover, dietary NDF percentage decreased from 48% to 30% in the least-cost diet and 
minimum CH4 scenarios. Similarly, dietary crude protein (CP) increased from 17.8% in the least-cost diet 
scenario to 20.6% in the minimum CH4 scenario.  
 
Feeds used for diet formulation also changed in both scenarios. For example, the major forage sources in 
the least-cost diet model were grass and oat silages and the major concentrates were flaked corn, soybean 
meal, distillers’ dried grains, and tomatoes. Conversely, in the minimum CH4 scenario, the major forage 
sources were corn and alfalfa silages, and the major concentrate sources were flaked corn, soybean meal, 
canola, and bakery waste. In both the least-cost diet and minimum CH4 scenarios, delivery of net energy 
for lactation (NEL) was at or slightly above the animal requirement level, suggesting that milk production 
in these two scenarios would be similar. 
 
Dietary cost in the least-cost diet and minimum CH4 scenarios are given in Table 2. Total diet costs 
decreased 34% and 10% in the least-cost diet and minimum CH4 scenarios, respectively, compared with 
the baseline. Total diet costs in the minimum CH4 scenario increased 35.5% compared with total diet 
costs in the least-cost diet scenario.  
 
Diet costs from the LP models may underestimate actual feeding costs because a series of assumptions are 
implied in the LP structure. Specifically, nutrient requirements and feeds’ nutrient composition are 
assumed to be known and error free, yet nutrient composition of feeds varies considerably (St-Pierre and 
Harvey 1986), and nutrient requirements within a pen of animals also vary. In practice, safety factors are 
used in the calculation of nutrient requirements of animals as described by Kohn (2007). Moreover, diets 
formulated in the computer software and the ones actually fed to animals may be quite different due to 
losses in the feeding process (Rossow and Aly 2013). Therefore, to meet cows’ nutrient requirements, 
nutrients are often overprovided, resulting in diets that are more expensive than the theoretical ones 
optimized by LP models. Moreover, a major reason for lower diet costs from optimization models may be 
the assumption that all feeds are available for purchase in unlimited quantity at every dairy. In this study, 
it was assumed that all feeds were available in every dairy at the same price, but in the baseline scenario 
not all dairies used all feeds. Some feeds might not be readily available in specific regions, at least at the 
price assumed. These factors may partially explain the substantially lower costs of diets in the LP models 
than those in the baseline scenario. Nevertheless, major differences in dietary costs may be a result of the 
diet optimization process, which is not always used in commercial dairy production settings.  
 
These differences in formulated and actual diet costs must be considered when comparing diet costs from 
the three scenarios to avoid the misleading impression that reduction of emissions from the baseline 
scenario to the minimum CH4 scenario may not increase dietary costs. In the baseline scenario, prices of 
actual diets fed to animals are calculated, whereas diet prices in the other two scenarios reflect theoretical 
optimization results. From an economic perspective, a suitable approach for examining changes in dietary 
costs under a set of production restrictions, such as CH4 emissions mitigation, is calculation of shadow 
prices. 
 
Shadow prices of CH4 emissions represent the marginal cost of CH4 emissions mitigation through dietary 
manipulation and were calculated as described by Moraes et al. (2012). In short, the CH4 emissions linear 
prediction model is used as an LP model constraint, which is set to proportionally reduce emissions at 
different mitigation intensities. This constraint can be thought of as an environmental regulatory policy 
that regulates the amount of emissions that a farm can emit. Shadow prices are then calculated in $/unit of 
CH4 or CO2 equivalent (CO2e) using a global warming potential of 21, as suggested by IPCC (2007)—
that is, dividing $/tonne CH4 by 21. These prices can be used to estimate the marginal cost of reducing 
CH4 emissions through dietary manipulation. Shadow prices of CH4 emissions mitigation, i.e. cost per 
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unit reduction of CH4 emissions, ranged from $5.02 to $20.1/kg CH4 (or $239 to $956/tonne CO2e), 
representing a 1% to 25% reduction of total CH4 emissions from the baseline scenario. These prices are 
plotted against the emissions reduction level from the baseline scenario in Figure 4.  

In a carbon cap-and-trade policy scenario, producers could use CH4 emissions shadow prices to determine 
the carbon trading value of their unit emissions reduction. Shadow prices generated in this study are 
substantially higher than current prices of carbon units in the California carbon credit market. 
Specifically, even for small reductions in CH4 emissions, i.e., 1% from baseline scenario, shadow prices 
are much higher than current carbon credit market values for the CO2 equivalent. For instance, marginal 
costs of CH4 mitigation are around $240/tonne CO2e for a 1% emissions reduction. Moreover, for 
substantial emissions mitigation (greater than 15% from the baseline), marginal costs are approximately 
$500/tonne CO2e. Such results are in agreement with results from Moraes et al. (2012) in which 
substantially high shadow prices were estimated for the U.S. dairy industry in 2012. 

	
  

Figure	
  4.	
  Shadow	
  Prices	
  of	
  Methane	
  Emissions	
  Mitigation	
  through	
  Dietary	
  Manipulation	
  versus	
  
Methane	
  Reduction	
  Percentage	
  from	
  the	
  Baseline	
  

 
	
  
Goal	
  Programming	
  Model	
  
The goal programming model combines the two previously developed LP models and provides a set of 
solutions with various levels of trade-offs between reducing dietary costs and reducing CH4 emissions. In 
comparing the least-cost diet and the minimum CH4 models, it is evident that dietary costs are 
dramatically increased when CH4 emissions are substantially reduced. Similarly, CH4 emissions are 
increased in the least-cost diet scenario (as discussed above). Construction of the weight grid allows 
identification of 21 solutions for which diet costs and predicted CH4 emissions are plotted in Figure 5. 
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Figure	
  5.	
  Methane	
  Emissions	
  versus	
  Diet	
  Costs	
  from	
  the	
  Solutions	
  of	
  the	
  Weighted-­‐Goal	
  Programming	
  
Model	
  	
  

 
Solutions at the two extremes of the weight grid are the same as individual LP optimizations, because w1 
or w2 are set to zero. As the weights change incrementally, solutions with different levels of goal trade-
offs are identified. Proportional changes and deviations in diet costs and CH4 emissions from the 
objective target values [t1 = $4.96/d and t2 = 77.4 emission factor units (CH4 = 16.4 MJ/d)] for all 21 
solutions are in Table 3. This set of solutions allows selection of diets with a desired level of trade-off 
between a dietary costs increase and a CH4 emissions reduction. For example, in the first row of Table 3, 
dietary costs are at their minimum set by the target level $4.96/d, and CH4 emissions are 4.90 MJ/d 
greater than the minimum CH4 emissions [CH4 = 4.90 + 16.40 = 21.30 MJ/d]. Conversely, in the last row, 
CH4 emissions are at their minimum level of 16.40 MJ/d, and dietary costs are $1.61/d more expensive 
than the target level [Cost = 1.62 + 4.96 = $6.57/d]. The other 19 solutions represent compromised 
solutions, which may be chosen by the decision maker according to their trade-off limits. Explicitly, 
solutions at the upper part of the table reflect more weight on minimizing dietary costs, and solutions at 
the lower part of the table reflect more weight on emissions minimization. For example, in solution 
number 4 (Table 3), dietary costs are $5.05/d, and CH4 emissions are 19.49 MJ/d. In solution number 10 
(Table 3), dietary costs are $5.27/d, and CH4 emissions are 18.10 MJ/d. At the lower end, in solution 
number 16 (Table 2), dietary costs are $5.86/d, and CH4 emissions are 16.50MJ/d. 
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Table	
  3.	
  Diet	
  Costs	
  and	
  Methane	
  Emissions	
  Deviations	
  from	
  the	
  Individual	
  Optimizations	
  Objective	
  
Function	
  Values	
  for	
  23	
  Goal	
  Programming	
  Distinct	
  Solutions	
  

Solution	
   	
  	
  	
  Δ	
  Diet	
  Cost	
  	
  	
  	
  	
  ($/d)	
  
Δ	
  Diet	
  Cost	
  	
  
(%)	
  

Δ	
  Methane	
  	
  
(MJ/d)	
  

Δ	
  Methane	
  	
  
(%)	
  

1	
   0.0000	
   0.0	
   4.9049	
   29.9	
  
2	
   0.0002	
   0.0	
   4.8770	
   29.7	
  
3	
   0.0763	
   1.5	
   3.3272	
   20.3	
  
4	
   0.0933	
   1.9	
   3.0864	
   18.8	
  
5	
   0.1451	
   2.9	
   2.6053	
   15.9	
  
6	
   0.1768	
   3.6	
   2.3733	
   14.5	
  
7	
   0.2134	
   4.3	
   2.0412	
   12.4	
  
8	
   0.2783	
   5.6	
   1.7882	
   10.9	
  
9	
   0.2998	
   6.0	
   1.7338	
   10.6	
  
10	
   0.3082	
   6.2	
   1.7023	
   10.4	
  
11	
   0.6042	
   12.2	
   0.6534	
   4.0	
  
12	
   0.6314	
   12.7	
   0.5616	
   3.4	
  
13	
   0.6852	
   13.8	
   0.4438	
   2.7	
  
14	
   0.7226	
   14.6	
   0.3692	
   2.3	
  
15	
   0.7377	
   14.9	
   0.3448	
   2.1	
  
16	
   0.8998	
   18.1	
   0.0920	
   0.6	
  
17	
   1.0525	
   21.2	
   -­‐0.1153	
   -­‐0.7	
  
18	
   1.1985	
   24.2	
   -­‐0.1247	
   -­‐0.8	
  
19	
   1.4539	
   29.3	
   -­‐0.0992	
   -­‐0.6	
  
20	
   1.5249	
   30.7	
   -­‐0.0724	
   -­‐0.4	
  
21	
   1.6110	
   32.5	
   0.0000	
   0.0	
  
Note:	
  Δ	
  Diet	
  Cost	
  ($/d)	
  is	
  the	
  difference	
  between	
  the	
  actual	
  goal	
  programming	
  solution	
  and	
  the	
  target	
  diet	
  cost	
  (t1	
  =	
  $4.96/d),	
  Δ	
  
Diet	
  Cost	
  (%)	
  is	
  the	
  proportional	
  change	
  in	
  diet	
  cost	
  from	
  the	
  target	
  value	
  diet	
  cost,	
  Δ	
  Methane	
  (MJ/d)	
  is	
  the	
  difference	
  in	
  
methane	
  emissions	
  between	
  actual	
  goal	
  programming	
  solutions	
  and	
  target	
  methane	
  emissions	
  (t2	
  =	
  77.41	
  emissions	
  factor	
  
units	
  (CH4	
  =	
  16.40	
  MJ/d)),	
  and	
  Δ	
  Methane	
  (%)	
  is	
  the	
  proportional	
  change	
  from	
  the	
  target	
  methane	
  emissions.	
  
 
The weight grid implemented in this study generated 101 solutions of which 21 are distinct, as described 
above. Deviational variables are plotted versus the weight grid loci (Figure 6) for an examination of the 
process of identifying the set of feasible solutions. It is evident that the proportional decrease in w1 causes 
the increase in p1, leading to an increase in dietary costs and decrease in CH4 emissions. Similarly, the 
sequential increase in w2 also leads to formulation of more expensive diets and reduced CH4 emissions. 
The changes in CH4 emissions and dietary costs are a result of formulation of different diets that supply 
nutrients according to the NRC (2001) daily nutrient requirements.  
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Figure	
  6.	
  Deviational	
  Variables	
  of	
  the	
  Weighted-­‐Goal	
  Programming	
  Model	
  versus	
  the	
  Weight	
  Grid	
  Loci	
  

 
Note:	
  pq	
  denotes	
  the	
  positive	
  deviational	
  variable	
  from	
  the	
  qth	
  goal	
  (minimize	
  dietary	
  cost	
  or	
  minimize	
  methane	
  emissions).	
  
Deviational	
  variables	
  represent	
  deviations	
  from	
  the	
  goal	
  programming	
  solution	
  to	
  the	
  target	
  level:	
  p1	
  ($/d)	
  represents	
  the	
  
deviation	
  in	
  dietary	
  cost	
  from	
  its	
  target,	
  and	
  p2	
  (emissions	
  factor	
  units	
  calculated	
  as	
  a	
  linear	
  combination	
  of	
  ether	
  extract	
  and	
  
neutral	
  detergent	
  fiber	
  of	
  the	
  feed)	
  represents	
  deviations	
  from	
  the	
  target	
  methane	
  emissions	
  factors.	
  The	
  x-­‐axis	
  is	
  the	
  loci	
  of	
  
the	
  weight	
  grid	
  starting	
  with	
  objective	
  function	
  weights	
  of	
  (1,	
  0)	
  until	
  (0,	
  1)	
  with	
  sequential	
  0.01	
  increments.	
  
 
The delivery of nutrients in each solution point is greater than or equal to the animal requirement set by 
the NRC (2001) model and can be achieved at different combinations of dry matter intake and diet 
nutrient density. For example, DMI, net energy for lactation intake and diet content, and dietary contents 
of NDF, CP and EE are plotted against the weight grid loci in Figure 7. When w1 decreases and w2 
increases (weight grid loci goes from 1 to 101), greater weight is placed on reducing CH4 emissions rather 
than on minimizing dietary costs. Therefore, DMI is reduced because it is the major determinant of 
enteric CH4 emissions. Similarly, for a reduced feed intake, dietary NEL and CP contents are increased to 
meet an animal’s nutrient requirement at a lower intake level. Conversely, the NDF proportion of the diet 
is decreased because an increase in the proportion of dietary structural carbohydrates is often associated 
with increased CH4 emissions. Notably, delivery of NEL is constant over different solutions and is 
delivered at the exact requirement level for every model solution, suggesting that cows receiving these 21 
diets may produce similar amounts of milk. Similarly, diets delivered RDP at the exact animal 
requirement level for every solution point, and they delivered RUP at the requirement level in 16 of the 
21 diets. In the remaining diets, RUP was fed above the requirement, which may lead to a potential 
increase in nitrogen excretion.  
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Figure	
  7.	
  Dry	
  Matter	
  Intake,	
  Net	
  Energy	
  for	
  Lactation	
  Intake,	
  and	
  Diet	
  Composition	
  versus	
  the	
  Goal	
  
Programming	
  Weight	
  Grid	
  Loci	
  

 
Note:	
  NEL	
  is	
  the	
  net	
  energy	
  for	
  lactation,	
  NDF	
  is	
  the	
  neutral	
  detergent	
  fiber	
  diet	
  percentage,	
  EE	
  is	
  the	
  ether	
  extract	
  diet	
  
concentration,	
  and	
  CP	
  is	
  the	
  crude	
  protein	
  diet	
  percentage.	
  The	
  x-­‐axis	
  is	
  the	
  loci	
  of	
  the	
  weight	
  grid,	
  starting	
  with	
  objective	
  
function	
  weights	
  of	
  (1,	
  0)	
  until	
  (0,	
  1)	
  with	
  sequential	
  0.01	
  increments.	
  
	
  
Reductions	
  in	
  Methane	
  Emissions	
  and	
  Costs	
  through	
  Specific	
  Agents	
  
ETTAC (2008) suggested that specific agents have the potential to reduce CH4 emissions by 11%. Recent 
reviews have comprehensively explored mitigation options for reducing CH4 emissions (Hook, Wright, 
and McBride 2010; Gerber et al. 2013) and identified use of ionophores as a potential mitigation tool. To 
investigate further CH4 emissions reductions (and associated costs) not accounted for in optimization 
models described above, this study examined utilization of monensin, the anti-methanogenic effect of 
which has been suggested as an effective CH4 mitigation dietary strategy (Appuhamy et al. 2013). The 
authors estimated a mean reduction of 7 g CH4/d (or 0.39 MJ/d, using the heat of combustion of CH4 as 
55.65 MJ/kg) in emissions from animals supplied with 21 mg monensin/kg DMI (Appuhamy et al. 2013).  
Monensin costs (from February and March 2013 in California) were approximately $0.10/g. Using the 
average DMI from the Castillo, St-Pierre, Silva del Rio, and Weiss (2013) baseline scenario of 23.3 kg 
DM/d, a dairy cow would consume approximately 489 mg/d of monensin, resulting in a daily cost of 
about $0.05/cow. In this context, the cost of mitigating CH4 emissions through the use of monensin would 
be $7/kg CH4 (or $0.12/MJ CH4) for the average cow in this study’s baseline scenario.  
 
Appuhamy et al. (2013) describe a dose effect in the following equation: mean difference between 
animals receiving monensin versus control group (g/d) = −12 − 1.1 × [Dose (mg/kg DMI) − 21 (mg/kg 
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DMI)]. This study examines the proportional reductions from the Castillo, St-Pierre, Silva del Rio, and 
Weiss (2013) baseline scenario, the least-cost diet, and the minimum CH4 scenarios by using 25 monensin 
doses between the minimum and maximum doses from Appuhamy et al. (2013). A vector of values from 
11 to 35 with increments of 1 mg/kg DMI was created, and the mean difference for each element of this 
vector was calculated. Reductions in CH4 emissions ranged from 1 to 27.4 g/d (0.05 to 1.52 MJ/d). In the 
baseline scenario, the reductions represent 0.25% to 7.0% in CH4 emissions. The mitigation cost at these 
emissions reduction levels ranged from $3 to $26/kg CH4. In the least-cost diet scenario, such reductions 
in emissions with the use of monensin would represent reductions of 0.24% to 7.1% at costs of $3 to 
$23/kg CH4. Finally, in the minimum CH4 scenario, proportional reductions with the use of different 
doses of monensin would range from 0.34% to 9.4% with associated mitigation costs of $2 to $20/kg 
methane.  
 
Before these results are applied to the large range of dairies in the United States, several points should be 
addressed. First, reductions of CH4 emissions in Appuhamy et al. (2013) are assumed to be linearly 
related to monensin dose; these reductions may not hold in datasets for which dietary and animal 
variables are outside the ranges of the studies analyzed. Second, only monensin purchase costs, not 
storage and feeding costs, are included in this study’s calculations. One assumption of these calculations 
is that dairies in the baseline scenario did not start off using monensin, but this assumption cannot be 
tested by the Castillo, St-Pierre, Silva del Rio, and Weiss (2013) data. Third, monensin may also affect 
energy metabolism, milk composition, DMI, health, and reproduction (see reviews by Duffield, Rabiee 
and Lean 2008a,b,c). Governmental regulation on monensin utilization in livestock production varies 
dramatically worldwide, from a complete ban to a set limit on allowable dose.  
 
RECOMMENDED	
  WORK	
  
Some work for consideration includes: 
 

• More comprehensive data collection, including a random sample of dairy farms within a state, 
would increase the robustness of this study’s analysis, which due to duration/funding limitations 
relied on readily available data. Inclusion of additional farms, more complete feed analysis (i.e., 
analyzed samples collected from farms), and accurate diet costs would improve the reliability of 
results. Moreover, more intensive data collection would allow the framework to be extended to 
stockers and feedlot cattle. 

• Most mitigation option studies have been conducted in isolation, and very few in vivo 
experiments have studied synergy/antagonism among mitigating agents. When adopting 
mitigating practices related to animal nutrition, decreasing the concentration of one nutrient will 
lead to increasing the concentration of another. For example, decreasing dietary protein may 
increase the concentration of dietary carbohydrates and result in increased CH4 production. This 
result may be counterbalanced by decreased N2O emissions when manure is applied to soil. 
Therefore, future studies should take a holistic approach, which includes analysis of feed, manure 
(volume and content), and level of production (milk or meat).  

• Mathematical models that predict emissions not only from animals but also from manure 
management specific to California conditions should be developed to assess mitigation options. 
These models should include prediction of manure volume and quality for proper estimation of 
emissions potential. This prediction should be based on field studies of the California production 
(both animal- and manure-related) system. 

• Studies of the CH4-mitigating effects of monensin should include the benefits of increasing the 
efficiency of dietary energy conversion into products, thereby allowing assessment of the true 
cost of monensin supplementation.  

• Dietary interventions, such as lipid and concentrate supplementation, must be carefully balanced 
against their potential negative impact on fiber digestibility, feed intake, and animal productivity. 



	
  

	
  
	
  

20	
  

Because lipid supplementation may have an influence on emissions, studies should examine 
saturated fat versus unsaturated fat supplementation and modes of action. 

• In California, grape pomace could be used as cattle feed. Grape pomace contains tannins that 
have been shown to reduce enteric CH4 production. However, in high quantities, tannins impair 
nitrogen metabolism. Therefore, in vivo experiments in California should be conducted to 
investigate the level of tannin (grape pomace) that should be fed to cattle to optimize production 
and emissions reduction. 
 

CONCLUSIONS	
  
Methane emissions were estimated and dietary costs calculated for 40 dairies in the California Central 
Valley. Two LP models were implemented to assess changes in dietary costs and potential reductions in 
CH4 emissions through dietary manipulations when formulating diets according to NRC guidelines. 
Emissions were found to increase slightly when formulating least-cost diets and were substantially 
reduced when the optimization goal was to formulate diets for a minimum CH4 emissions level. Methane 
emissions mitigation costs were assessed through shadow prices and were particularly high when 
compared with prices in current carbon markets. To combine the two previously developed LP models 
and jointly minimize emissions and dietary costs, a weighted-goal programming model was proposed. 
Such a model uses a weighing scheme in the objective function for the identification of a set of solutions 
with various trade-off levels between the two goals. The weight grid generated a set with 21 distinct 
solutions from which the decision maker can choose the solution with the desired level of trade-off. 
Potential further reductions in CH4 emissions with monensin supplementation were examined and its 
associated costs were computed.  
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