Built Environments 18. Wildlife Road Crossing Structures

DEFINITION

Wildlife road crossing structures (WRCSs) are infrastructure built with the joint goals of increasing habitat connectivity across roads and reducing wildlife–vehicle collisions. These structures can take many forms and are sited and designed differently depending on the type of wildlife present in the nearby ecosystem (FHWA 2011). Different forms of WRCSs fall along a continuum of gray to green infrastructure; all include some form of gray infrastructure, but most also use natural infrastructure (FHWA 2011). Roads are direct threats to wildlife because of the potential for wildlife–vehicle collisions that cause individual mortalities, but also because roads fragment wildlife habitat and can limit natural wildlife movement patterns throughout a landscape (Bissonette and Cramer, 2008). Wildlife–vehicle collisions can result in both personal injury and property damage (Huijser et al. 2007). WRCSs are therefore installed to protect human life and property and maintain healthy wildlife populations.

TECHNICAL APPROACH

When designing a road, the first step to minimize wildlife disruption is to try and avoid impacting certain sensitive or essential habitats or connectivity corridors. When avoidance is not possible, WRCSs are the next-best option to reduce impacts to wildlife and risks of wildlife–vehicle collisions. There are three primary steps to installing a WRCS, summarized below from the Federal Highway Administration's Wildlife Crossing Structure Handbook (FHWA 2011).

1. Habitat connectivity planning: The first step to creating successful WRCS is to do a landscape-level assessment to understand what habitats the road is impacting, which wildlife species use those habitats, and which species are most likely to be impacted by the road. Habitat connectivity planning can either be done at the project level (specific to a particular road project) or, preferably, at the system level (taking into account the broader regional road network). System-level planning allows for an assessment accounting for how the regional road network impacts wildlife movements. Connectivity planning may include a regional landscape assessment of wildlife connectivity needs within a transportation corridor. If possible, predicted climate-induced range shifts of wildlife species should be incorporated into the connectivity plan to ensure that WRCSs are designed with likely future scenarios in mind. Connectivity planning often involves wildlife movement modeling, collection of field data on wildlife locations and movements, and/or roadkill data. The connectivity planning stage will help make decisions about how many WRCSs to install and where to site them. For more information on connectivity planning and the types of data needed for these types of assessments, see Chapter 3 of the Wildlife Crossing Structure Handbook. For an example of a connectivity plan at a state level, see an example plan created for North Carolina (Sutherland et al. 2022).

- **2. Selection of appropriate WRCS design type(s):** There are two primary types of WRCS: *overpasses* and *underpasses* (Figures 1–2). There are multiple subtypes of both over- and underpasses, and selecting which types to use and how to space them depends on the goals of the WRCS, the type of wildlife expected to use them, and the landscape topography. Some of the most common WRCS forms can be found in Table 18.1. For more information on how to select a WRCS design, see Chapter 4 of the Wildlife Crossing Structure Handbook.
- **3. Installation of WRCS**: The final step is installation of the selected WRCS type(s). It is possible that, in addition to the WRCS, there will also be installation of wildlifebehavior–modifying structures to encourage use of the WRCS and/or discourage crossings in areas where WRCS do not exist. These behavior-modifying structures include installation of fencing, planting or removal of vegetation with high nutritional value in particular locations, intercept feeding (placement of food sources), and aversion techniques including use of lights, lasers, water sprays, or mirrors (Huijser et al. 2007). It is typically most efficient and effective to install WRCS during road construction; however, it is also possible to retrofit existing roads to allow for wildlife crossings (USFS and NPS, 2017).

Figure 18.1 Wildlife underpass in San Diego County, CA

Photo courtesy USFWS Pacific Southwest Region

Figure 18.2 Wildlife overpass in Arizona

Photo courtesy USFWS Pacific Southwest Region

OPERATIONS AND MAINTENANCE

Maintenance of each WRCS listed in Table 1 will differ. Maintenance details for each structure type can be found in the entries of Appendix C of the Wildlife Crossing Structure Handbook. Example maintenance activities include irrigating vegetation on the crossing structures during the first few years of operation, repairing damage to gray infrastructure components, and removing obstructions to underpass structures.

FACTORS INFLUENCING SITE SUITABILITY

- Existing wildlife corridor: WRCS should be placed in locations where wildlife would naturally travel (e.g., in riparian areas, along ridgelines) and in locations important for landscape connectivity (FHWA 2011).
- **Steep slope:** Areas with steep slopes are not well-suited to WRCS (FHWA 2011).

Table 18.1 Common types of WRCSs

Overpass Designs	Underpass Designs			
Landscape bridge: Designed exclusively for wild- life use. Because of their large size, they are used by the greatest diversity of wildlife and can be adapted for amphibian and reptile passage	Viaduct or flyover: The largest of underpass structures for wildlife use, but usually not built exclusively for wildlife movement. The large span and vertical clearance of viaducts allow for use by a wide range of wildlife. Structures can be adapt- ed for amphibians and reptiles, semiaquatic, and semiarboreal species.			
<i>Wildlife overpass:</i> Smaller than landscape bridges, these overpass structures are designed to meet the needs of a wide range of wildlife from small to large.	<i>Large mammal underpass:</i> Not as large as most viaducts, but the largest of underpass structures designed specifically for wildlife use. Designed for large mammals, but small- and medium-sized mammals readily use them as well.			
<i>Multiuse overpass:</i> Generally the smallest of the wildlife overpasses. Designed for mixed wildlife and human use. This wildlife crossing type is best adapted in human-disturbed environments and will benefit generalist species adapted to regular amounts of human activity and disturbance.	<i>Multiuse underpass:</i> Design similar to large mammal underpass; however, management objective is co-use between wildlife and humans. Design is generally smaller than a large mammal underpass because of the type of wildlife using the structures, along with human use. These structures may not be adequate for all wildlife, but usually result in use by generalist species common in human-dominated environments (e.g., urban or periurban habitats). Large struc- tures may be constructed to accommodate the need for more physical space for humans and habitat generalist species			
Canopy crossing: Designed exclusively for semi- arboreal and arboreal species that commonly use canopy cover for travel. Meets the needs of spe- cies not built for terrestrial travel that generally have difficulties crossing open, nonforested areas	Underpass with waterflow: An underpass structure designed to accommodate the needs of moving water and wildlife. These underpass structures are frequently used by some large mammal species, but their use depends largely on how they are adapted for animals' specific crossing needs. Small- and medium-sized mam- mals generally use these structures, particularly if riparian habitat or cover is retained within the underpass			
	Small- and medium-sized mammal underpass: One of the smaller wildlife crossing structures. Primarily designed for small- and medium-sized mammals, but species use will depend largely on how the crossing may be adapted for their specific crossing needs			
	Modified culvert: Crossing that is adaptively de- signed for use by small- and medium-sized wild- life associated with riparian habitats or irrigation canals. Adapted dry platforms or walkways can vary in design and are typically constructed on the lateral interior walls of the culvert and above the high-water mark.			
	Amphibian and reptile tunnels: Crossing de- signed specifically for passage by amphibians and reptiles, though other small- and medi- um-sized vertebrates may use as well. Many dif- ferent amphibian and reptile designs have been used to meet the specific requirements of each species or taxonomic group			

Adapted from the Wildlife Crossing Structure Handbook

TOOLS, TRAINING, AND RESOURCES FOR PLANNING AND IMPLEMENTATION

							Reso Inclu	urce Ides	;
Name and Link	Resource Type	Year	Authors/ Authoring Organization	Geography	Description	Design/Construction Guidance?	Site Selection?	Monitoring Guidance?	Example Projects?
Wildlife Cross- ing Structure Handbook: Design and Evaluation in North Amer- ica	Guidebook	2011	US Depart- ment of Trans- portation, Fed- eral Highway Administration	North Amer- ica	This guide provides details on placement and selec- tion of appropriate types of WRCS	•	✓	~	_
US DOT Wild- life Crossing Structures Portal	Website	n.d.	US Depart- ment of Trans- portation	National	This portal contains links to WRCS resources specific to particular regions of the United States, including assessments of structure effectiveness	✓	✓		
Wildlife and Roads: De- cision Guide and Project Database	Tool and database	n.d.	Utah State University, USGS, National Academies Transporta- tion Research Board	National	This website contains a de- cision guide that helps users plan and implement WRCS projects. It also contains a database of WRCS projects in the US.	✓	✓	~	•
Evaluation of the Use and Effectiveness of Wildlife Crossings	Report	2008	National Academies Transporta- tion Research Board	National	This report contains a liter- ature review that explores the development of a tool that guides the selection, configuration, and location of WRCS		✓		
Wildlife Vehi- cle Collision and Crossing Mitigation Measures	Guidebook	2007	US Depart- ment of Trans- portation, Fed- eral Highway Administra- tion; Montana Department of Transportation	Written for Montana, but most information is broadly applicable	This report reviews 39 mitigation measures that help reduce wildlife-vehicle collisions and provide hab- itat connectivity for wildlife crossings. The guide is fo- cused on structures for large terrestrial mammals.	✓	✓	✓	_

						Resource Includes			•
Name and Link	Resource Type	Year	Authors/ Authoring Organization	Geography	Description	Design/Construction Guidance?	Site Selection?	Monitoring Guidance?	Example Projects?
Measures to Reduce Road Impacts on Amphibians and Reptiles in California	Guidebook	2021	California Department of Transporta- tion, University of Montana, Herpetofauna Consultants International	Written for California but most in- formation is more broad- ly applicable	This best management practices guide describes practices for retaining or im- proving habitat connectivity for amphibians and reptiles in California	✓	•	•	_
Highway Crossing Structures for Wildlife: Opportunities for Improving Driver and Animal Safety	Report	2021	US Forest Ser- vice	National	This report reviews a vision for designing a road net- work that incorporate WRCS for human and wildlife ben- efits. It includes a descrip- tion of common challenges faced when installing these structures	_	✓	_	✓

LIKELY BENEFITS AND OUTCOMES

Primary objectives for each strategy are highlighted.

Social and Economic

• **Public health and safety:** It has been estimated that wildlife–vehicle collisions with deer alone result in more than 200 human fatalities, 29,000 human injuries, and more than \$1 billion in property damage each year in the United States (Conover et al. 1995). WRCS help reduce the likelihood of collisions that can cause human injury or mortality.

Ecological

• **Supports wildlife:** Road infrastructure is a direct threat to wildlife both because of the potential for wildlife–vehicle collisions that cause individual mortalities, but also because roads fragment wildlife habitat and can limit natural wildlife movement patterns throughout a landscape. In some cases, highways are a movement barrier that can reduce survival probability of a particular wildlife population as a result of habitat restrictions and/or limited gene flow (Bissonette and Cramer 2008; Huijser et al. 2007; Ament et al. 2021). WRCSs are intended to support wildlife by reducing these negative

effects of roads and highways. Additionally, as wildlife range shifts occur as a result of climate change, WRCSs can help animals to shift their ranges accordingly (Ament et al. 2021).

• **Increased habitat connectivity:** WRCSs help sustain wildlife populations and ecosystem integrity by connecting habitats at a local scale (Ament et al. 2021).

BARRIERS AND SOLUTIONS FOR PRACTITIONERS

Common Barriers

Several barriers are common across many of the nature-based solutions strategies; these are described in more detail in Section 1 of the Roadmap. Additional notes about the barriers specific to wildlife road crossing structures are included here.

- Expense
- **Capacity:** Large-scale transportation plans often do not include considerations for WRCSs, and additional efforts must be made to ensure wildlife mitigation measures are included in road planning and design. Additionally, resource constraints often make it difficult to sufficiently coordinate and plan to install WRCSs (Ament et al. 2021).
- Public opinion
- Conflict with other land uses
- Regulation
- Lack of effectiveness data

Community

• Administrative constraints: Roads often cross jurisdictional boundaries and coordination across agencies, governments, and landowners is often required to install WRCSs (Ament et al. 2021).

EXAMPLE PROJECTS

Name and Link	Location	Leading Organizations	Techniques Used	Size	Cost	Duration	Project Description	Climate Threats Targeted	Lessons Learned or Adaptive Management
Idaho State Highway 21 Underpass	Idaho	Idaho Transpor- tation Depart- ment, Idaho Department of Fish and Game	Underpass and associat- ed fencing	Not pro- vided	Not provid- ed	Not pro- vided	A location along Idaho State High- way 21 near Lucky Peak Reservoir was identified as an important wildlife migration corridor for deer and elk. The underpass was built to reduce wildlife-vehicle col- lisions.	No	No
Banff Wild- life Over- passes	Trans-Cana- da Highway, Canada	Parks Canada	WRCS including six wildlife overpasses with native plants and associated fencing and 38 wildlife underpasses	Not pro- vided	Not provid- ed	Not pro- vided	Overpasses were part of a large effort in the 1980s to reduce wildlife-ve- hicle collisions	No	Have reduced wildlife-vehicle collisions by 80%
Colorado State High- way 9	Grand County, Colorado	Colorado De- partment of Transportation	A series of wildlife crossings plus wildlife funnel fenc- ing along 10 mi of State Highway 9. It included two overpasses, five under- passes, and 10 mi of fence	Along 10 mi of highway	~\$10million	Not pro- vided.	Implemented to reduce wildlife-ve- hicle collisions with mule deer and elk	No	The project is considered a success, and is projected to pay for itself in 22 years as a result of re- duced collision costs

Nicholas Institute for Energy, Environment & Sustainability, Duke University | 301

REFERENCES

- Ament, R., S. Jacobson, R. Callahan, and M. Brocki. 2021. *Highway Crossing Structures for Wildlife: Opportunities for Improving Driver and Animal Safety.* Albany, CA: United States Department of Agriculture, Forest Service, Pacific Southwest Research Station. https://www.fs.usda.gov/research/treesearch/62531.
- Bissonette, J. A., and P. C. Cramer. 2008. National Cooperative Highway Research Program (NCHRP) Report 615: Evaluation of the Use and Effectiveness of Wildlife Crossings. Washington, DC: Transportation Research Board. https://nap. nationalacademies.org/catalog/14166/evaluation-of-the-use-and-effectivenessof-wildlife-crossings.
- Conover, M. R., W. C. Pitt, K. K. Kessler, T. J. DuBow, and W. A. Sanborn. 1995. "Review of Human Injuries, Illnesses, and Economic Losses Caused by Wildlife in the United States." *Wildlife Society Bulletin* 23(3): 407–14.
- FHWA. 2011. Wildlife Crossing Structure Handbook. Lakewood, CO: United States Department of Transportation, Federal Highway Administration, Central Federal Lands Highway Division. https://www.fhwa.dot.gov/clas/ctip/wildlife_ crossing_structures/.
- Huijser, M. P., A. Kociolek, P. McGowen, A. Hardy, A. P. Clevenger, and R. Ament. 2007. Wildlife-Vehicle Collision and Crossing Mitigation Measures: A Toolbox for the Montana Department of Transportation (FHWA/MT-07-002/8117-34). Bozeman, MT: Western Transportation Institute, Montana State University. https://doi. org/10.21949/1518298.
- Sutherland, R., A. Vanko, and N. Robinson. 2022. *Prioritizing Wildlife Road Crossings in North Carolina*. Salt Lake City, UT: Wildlands Network. https://wildlandsnetwork. org/news/prioritizing-wildlife-road-crossings-in-north-carolina.
- USFS and NPS. 2017. Retrofitting Existing Structures for Wildlife Passage: Assessment Tools. Washington, DC: United States Department of Agriculture Forest Service, National Park Service. https://www.fs.usda.gov/wildlifecrossings/resources/ retrofitting-structures.php.

This strategy is one section of a larger work, the Department of the Interior Nature-Based Solutions Roadmap, writtenin collaboration between the Nicholas Institute for Energy, Environment & Sustainabilty at Duke University and the US Department of the Interior. This section and the whole document is a work of the United States Government and is in the public domain (see 17 U.S.C. §105).

Authors and Affiliations

Katie Warnell, Nicholas Institute for Energy, Environment & Sustainability, Duke University Sara Mason, Nicholas Institute for Energy, Environment & Sustainability, Duke University
Aaron Siegle, Duke University
Melissa Merritt, Nicholas School of the Environment, Duke University
Lydia Olander, Nicholas Institute for Energy, Environment & Sustainability, Duke University

Contributors

Tamara Wilson, US Department of the Interior Whitney Boone, US Department of the Interior

Acknowledgments

The Department of the Interior's Nature-Based Solutions Working Group provided input and feedback on the DOI Nature-Based Solutions Roadmap throughout its development. This work was supported by the US Geological Survey National Climate Adaptation Science Center.

Citation

Warnell, K., S. Mason, A. Siegle, M. Merritt, and L. Olander. 2023. *Department of the Interior Nature-Based Solutions Roadmap*. NI R 23-06. Durham, NC: Nicholas Institute for Energy, Environment & Sustainability, Duke University. https://nicholasinstitute.duke.edu/publications/department-interior-nature-based-solutions-roadmap.

Nicholas Institute for Energy, Environment & Sustainability

The Nicholas Institute for Energy, Environment

& Sustainability at Duke University accelerates solutions to critical energy and environmental challenges, advancing a more just, resilient, and sustainable world. The Nicholas Institute conducts and supports actionable research and undertakes sustained engagement with policymakers, businesses, and communities in addition to delivering transformative educational experiences to empower future leaders. The Nicholas Institute's work is aligned with the Duke Climate Commitment, which unites the university's education, research, operations, and external engagement missions to address the climate crisis.

United States Department of the Interior

The US Department of the Interior protects and manages the Nation's natural resources

and cultural heritage; provides scientific and other information about those resources; and honors its trust responsibilities or special commitments to American Indians, Alaska Natives, and affiliated Island Communities. The Department of the Interior plays a central role in how the United States stewards its public lands, increases environmental protections, pursues environmental justice, and honors our nation-to-nation relationship with Tribes.