North Carolina Power Sector Carbon Policies

An Analysis of North Carolina Clean Energy Plan Recommendation A1

Clean Energy Plan Goals

DUNC

CEP Recommendation A-1

OVERVIEW OF STRATEGY AREAS & RECOMMENDATIONS

Carbon Reduction (A)

A. Decarbonize the electric power sector

Page 55

- A-1. Deliver a report that recommends carbon-reduction policies and the specific design of such policies that best advance core values, such as GHG emission reductions, electricity affordability, and grid reliability. The report will evaluate policy designs for the following carbon reduction strategies:
 - 1. Accelerated coal retirements,
 - 2. Market-based carbon reduction program,
 - 3. Clean energy policies, such as an updated REPS, clean energy standard, and EERS, and

EVIPOND CENTER FOR CLIMATE, ENERGY, ENVIRONMENT AND ECONOMICS

4. A combination of these strategies.

Legislature, State Agencies, Academia

CEP Recommendation A-1

OVERVIEW OF STRATEGY AREAS & RECOMMENDATIONS

Carbon Reduction (A)

A. Decarbonize the electric power sector

• A-1. Deliver a report that recommends carbon-reduction policies and the specific design of such policies that best advance core values, such as GHG e A1 Stakeholder group decided not to make e report will evaluate policy designs for the recommendations but to provide options for

decarbonization.

- 1. Accelerated coal retirements.
- 2. Market-based carbon reduction program,
- Clean energy policies, such as an updated REPS, clean energy standard, and EERS, and 3.
- 4. A combination of these strategies.

Legislature, State Agencies, Academia

EVIPOND CENTER FOR CLIMATE, ENERGY, ENVIRONMENT AND ECONOMICS

Page 55

A1 Process

December 2019 to February 2021:

- Bimonthly meetings with stakeholders (~90) through fall 2020
- Policy, Technical Working Groups
- Two public forums
- Power sector modeling, economic analysis
- Interaction with parallel processes
- Stakeholder input on the draft report
- Final report: March 2021

Involved Sectors

EVIPONENT AND ECONOMICS

A1 Report Overview

DUNC CENTER FOR CLIMATE, ENERGY, ENVIRONMENT AND ECONOMIC

Power Sector Carbon Reduction: An Evaluation of Policies for North Carolina

Kate Konschnik, Martin Ross, Jonas Monast, Jen Weiss, and Gennelle Wilson

Studies 4 policy "pathways", variations, and combinations:

1. Accelerated coal retirements.

2. Carbon "adders" on new construction, generation.
 3. Declining carbon budget (RGGI).

4. Clean energy standards (CES).

RGGI Options

RGGI Allowance Value (2012\$)	Year
140 million	2023
139 million	2024
139 million	2025
139 million	2026
113 million	2027
113 million	2028
90 million	2029
90 million	2030
963 million	TOTAL

1. Typical RGGI budget (-3% each year, 2023-2030)

- Slightly tighter budget to hit
 22 mmt CO2 by 2030
- 3. Auction allowances; use resulting state funds on EE, bill assistance, or state budget

4. Freely distribute allowances; NCUC likely directs utilities to pass on value to customers

DUNC

Policy Dynamics

Clean Energy policies "pull" clean resources onto the grid

Coal retirements and carbon pricing "push" fossil generation/ emissions out of the system

DINC

Points of Policy Comparison

- In-state CO2 power sector emissions, in 2030 and over time (2023-2050);
- In-state NOx, SO2 power sector emissions, in 2030 and 2040;
- Imported CO2 emissions;
- Cost (NPV in total costs over time, and \$/ton reduced);
- NC generation and capacity mix over time;
- [Subset of policies] Rate/bill changes; jobs/economic outlook.

Qualitative A1 Core Values

- Manufacturing Competitiveness
- Energy Burden

Affordability

Equity

- Access to Clean Energy
- Impacts to Frontline Communities
- Just Transition

A1 Report Caveats

Modeling did not attempt to duplicate how Duke Energy operates the grid

Assumptions – where there was disagreement among stakeholders, did not use most optimistic views of renewables, but then ran alternative cases

Results are directional only

Results turn on how we defined policies; any policy can be designed to meet different goals

A1 Report Take-Aways

UNC CENTER FOR CLIMATE, ENERGY, ENVIRONMENT AND ECONOMIC

Power Sector Carbon Reduction: An Evaluation of Policies for North Carolina

Kate Konschnik, Martin Ross, Jonas Monast, Jen Weiss, and Gennelle Wilson

System is poised for transition

- Highly responsive to modest changes in relative costs of different resources
- > Policy can make a difference
- NC has cost effective options (ex. coal retirements, RGGI < 1% system cost increases)

A1 Report Take-Aways

What might achieve the 2030 CEP target:

- Carbon Adder on Generation (\$6/ton in 2023 + 7%) (by proxy, RGGI?)
- CES on retail sales (70% clean by 2030; with/without offshore wind carve-out)
- CES Combinations: Coal Retirement, RGGI (with/without wind), and Carbon Adder on Capacity or Generation

Baseline CO2 Emissions

Duke NICHOLAS INSTITUTE FOR ENVIRONMENTAL POLICY SOLUTIONS

DUNC

NC In-State Emissions from Generation

NC Total Emissions from Generation (adjusted for imported electricity)

Total Emissions Reductions in 2030 (% change from 2005)

<u>EUNC</u> CENTER FOR CLIMATE, ENERGY, ENVIRONMENT AND ECONOMICS

Policy Costs in Net Present Value (\$ billion through 2050 and \$ per ton reduced)

Policy Costs in Net Present Value (\$ billion through 2050 and \$ per ton reduced)

Local Air Pollution in 2030 (mmt)

egory		IPM Model		DIEM Model	
Cat	Policy Cases	NOx	SO2	NOx	SO2
	Baseline	15.6	4.6	13.9	4.1
ne	Accelerated Coal Retirement	7.7	0.8	9.5	0.8
	RGGI with 3% decline per year to 2030	12.1	3.4		
	RGGI with 2030 CEP target	10.2	2.8		
	RGGI w/2030 CEP target & EE	9.9	2.7		
lalo	CO2 Adder on New Capacity	15.7	4.7	13.3	4.2
Stand	CO2 Adder on Generation			3.4	0.0
	CO2 Adder on Generation w/import adjust			4.0	0.0
	CO2 Adder on Generation - USA wide			5.0	0.0
	CES on NC Retail Sales	11.4	3.5	9.9	2.7
	CES on USA-wide Retail Sales			3.1	0.1
Combination	CES + Coal Retirement	5.6	0.5	7.2	0.8
	CES + RGGI	7.6	1.5		
	CES + RGGI + Offshore Wind	7.1	1.3		
	CES + Carbon Adder on New Capacity	11.7	3.5	9.2	2.5
	CES + Carbon Adder on Generation	3.3	0.0	2.4	0.0
	CES + Offshore Wind	11.4	3.3	8.0	2.0

DINC

Changes in NC Capacity by 2030 (GW)

* Solar PV excludes required installations under HB 589

DUNC

NC Generation in 2030 (TWh)

		IPM Model			DIEM Model			
			Non-	Net		Non-	Net	
Policy Cases		Fossil	emitting	Imports	Fossil	emitting	Imports	
	Baseline	67	65	21	59	73	20	
ne	Accel Coal Retirement	56	65	33	56	73	23	
lalo	RGGI with 2030 CEP	55	65	34				
Stand	CO2 Adder on New Cap	63	65	25	57	73	22	
	CO2 Adder on Gen				35	78	40	
	CES on NC Sales	57	99	-1	46	98	8	
Combination	CES + Coal Retire	46	99	9	43	98	10	
	CES + RGGI	49	99	6				
	CES + RGGI + Offsh Wind	48	99	7				
	CES + CO2 on New Cap	57	99	-2	46	98	9	
	CES + CO2 on Gen	39	99	14	29	98	26	
	CES + Offsh Wind	56	99	-1	43	98	10	

DUNC

Change in Generation by 2030 (difference from baseline generation in 2023)

DUNC