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INTRODUCTION 

Te concept of ecosystem services has been 
formalized into U.S. Forest Service decision-
making over the past decade in response to 
the 2012 Forest Planning Act and Agency 
regulations and directives, but many practical 
questions remain about how to do this 
most efectively. Many USFS decisions use 
scenarios to assess how diferent management 
approaches will meet diferent objectives and 
what the trade-ofs might be. Ofen this is 
done using predictive models developed by 
the USFS. Some of the models commonly 
used by the USFS do not yet include many 
ecosystem services outcomes, but there are 
other predictive models designed for ecosystem 
services that might help fll such gaps. Tis 
project explores how these non-USFS models 
could be combined with existing USFS models 
to provide a fuller analysis of ecosystem 
services outcomes from diferent management 
scenarios. We used an ecosystem service 
conceptual model as a framework to examine 
the utility of currently available predictive 
models for quantifying the efects of fre and 
timber management on ecosystem services and 
socioeconomic outcomes. 
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ECOSYSTEM SERVICE CONCEPTUAL MODELS 

Ecosystem Service Conceptual Models (ESCMs) are box-and-arrow diagrams that summarize the 
efects of an intervention, such as natural resource management, on ecological and social systems. 
Each model links changes in biophysical systems caused by an intervention to measurable 
socioeconomic, human well-being, and ecological outcomes. ESCMs assume that the intervention 
is successful and include all potentially signifcant outcomes for the intervention; not all 
outcomes will be relevant to each individual project, depending on location and environmental 
conditions. 

Te relationship of an intervention to an outcome (whether the restoration will have a positive 
or negative infuence) ofen depends on the specifc situation or is unclear due to multiple 
links (arrows) leading into an outcome that may have opposite efects. Tus, language like 
“increased” or “decreased” is not included in the models. Tese models are ofen used to consider 
management with or without an intervention or to compare diferent interventions. 

Fire and Timber Management ESCM 
Te ESCM for Fire and Timber Management (Figure 1) was initially developed from literature 
and refned through a series of conversations with experts within and outside of USFS. Some 
experts provided feedback on the ESCM itself, while others reviewed the ESCM as part of a 
conversation about predictive models for relationships represented in the ESCM. 

Te ESCM for Fire and Timber Management includes four interventions: 

• Harvest of timber for commercial sale 

• Tinning vegetation to improve stands’ commercial value or to manage fuel loads 

• Chemical treatment to reduce undesirable vegetation types or to manage fuel loads 

• Prescribed burn to manage fuel loads or shif tree species composition for harvest or 
habitat 

Te general version of the ESCM is available here. Additional information about the ESCM, 
including discussion of uncertain links and environmental factors that infuence the 
interventions, can be found here. 

Te version of the ESCM below has links (arrows) color-coded by model category, corresponding 
with the predictive model summary tables (page 6). Where there are gaps in available predictive 
models, it also indicates whether there is information in the literature that can help to fll the gap 
(dashed black line) or a lack of information in the literature (dotted black line). 
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Figure 1: Ecosystem Service Conceptual Model for Fire and Timber Management on USFS Land with Predictive Model 
Information 
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PREDICTIVE MODELS FOR MANAGEMENT EFFECTS ON ECOSYSTEM 
SERVICES 

Developing predictive or scenario modeling tools for ecosystem services ofen requires linking 
together a string of predictive models that lead from initial ecological changes, to how those 
changes afect people and, sometimes, to how people value those changes. Ofen, models across 
diferent types of ecological (e.g., hydrology, species, timber, fre) and social changes (e.g., 
recreational use, cultural connection, drinking or irrigation water use) must be connected 
together. 

Error and Uncertainty in Predictive Modeling 
Results of predictive models do not perfectly refect what will actually occur in the system, since 
models are simplifed versions of complex (and ofen not completely understood) processes 
(Uusitalo et al. 2015). Terefore, when using predictive models for management decisions, it 
is important to understand the error and uncertainty associated with the predictive model 
(Schmolke et al. 2010). In many cases, models have been validated by comparing their results 
with observed data that were not used in model development (see examples in the “evaluation” 
column in the predictive model summary tables). Tis can give an idea of the model’s accuracy 
and error, but diferences between the context in which the model was validated and the 
management context may make the model more or less accurate in the management context, and 
relevant observed data are ofen unavailable, especially in ecological contexts (Augusiak et al. 
2014; Wenger and Olden 2012). Te quality of input data available to run and calibrate the model 
also infuences model accuracy (Sargent 2013). 

Combining predictive models (i.e., using outputs from one model as input data for another 
model) raises additional issues related to model accuracy, uncertainty, and validation. Error and 
uncertainty from individual models can propagate through the combined model system (Laniak 
et al. 2013). Tis can make model results more challenging to use for management, especially if 
relevant observed data to test the accuracy of fnal model results are not available (Kelly et al. 
2013). Bayesian network modeling, which integrates multiple predictive models to represent a 
complex system, can help to address this by incorporating uncertainty and variability of each 
individual model to create a probability distribution for each output variable (Borsuk et al. 2004). 

Predictive Model Summary Tables 
Te following tables contain summaries of existing predictive models that can be linked together 
to quantify ecosystem services for timber and fre management. Predictive models can be fully 
developed tools designed for third-party use or equations described in scientifc literature; the 
key defning feature is that they allow the user to estimate a change in a target variable (e.g., tree 
size, species population, fre intensity, jobs) from information about other variables thought to 
infuence the target variable. 

Predictive models were selected and summarized based on literature, model documentation, 
and conversations with modeling experts within and outside of USFS (see Acknowledgements). 
Te Predictive Model Library is designed to provide a starting point for someone interested 
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in building a model to run scenarios quantifying management efects on ecosystem services 
and people. It is not a comprehensive guide to using each predictive model, nor a combined 
model that is ready to run. Only the models that seemed most useful for quantifying efects on 
ecosystem services, based on literature and expert opinion, are included. In particular, we had 
a strong bias toward including models developed and used by the USFS, so that there is existing 
USFS expertise in running the models. 

Predictive model summaries are presented in table format organized by topic. Tese topics 
correspond with the color-coded groups of relationships (arrows) in the conceptual model 
diagram (Figure 1): 

Predictive model category Summary table pages 
Fuel and fire dynamics 8–11 

12–13 

14–17 

18–20 

21–22 

23 

Forest dynamics 
Air quality and health 

Hydrology 
Economic effects 

Species distribution 

Te summary for each predictive model includes the following sections: 

Model name: Name of the model 

Short description: Describes the processes the predictive model estimates and the context for 
which it was designed 

Data requirements: Data required to run the model and common sources for these data, if 
available. 

Model outputs: Te variables and fle types that the model creates 

Connectivity to other models: How the predictive model can be connected with other predictive 
models (e.g., whether it can use other models’ outputs for inputs, or if its outputs can be used as 
inputs for other models) and what data processing would be required to make those connections 

Capacity required: Whether the model is freely available or needs to be purchased, what 
computing power is needed to run the model, and what level of expertise is needed to run the 
model 

USFS contact or external resource: USFS staf familiar with the model who may be a resource to 
others interested in using it, if available, or model source 

Evaluation: How the model’s accuracy and validity has been evaluated, for example by 
comparing modeled results with observed data or through uncertainty analysis 
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Predictive Model Gaps 
Some relationships (arrows) in the conceptual model do not have relevant predictive models. 
Tese predictive model gaps can be due to gaps in knowledge of the relationship or because 
the relationship is inherently difcult to quantify. Tese are shown as gray arrows in the 
conceptual model. Solid gray arrows indicate that there is some quantitative information about 
the relationship in the literature that could be used for rough quantitative estimates, but it does 
not address all aspects of the relationship or was developed for a context diferent from that of 
the relationship in the model. Dashed gray arrows indicate that there is little or no quantitative 
information about the relationship in the literature, ofen because the relationship has not been 
thoroughly studied or is inherently difcult to measure or quantify. Key predictive model gaps 
likely to be relevant to many USFS contexts include: 

• Te efects of harvest and thinning on soil compaction 

• Te efect of prescribed burns on soil hydrophobia, and subsequent efects on runof and 
basefow 

• Te efects of runof and basefow on water quality parameters including bacteria and 
chemical constituents 

• Te efects of catastrophic fres on property damage and human injury or death 

A short discussion of each of the predictive model gaps is included afer the predictive model 
summary tables (page 24). 
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Table 1. Predictive Model Summaries: Fuel and Fire Dynamics 

Model name Short description Data requirements Model outputs Connectivity to other 
models Capacity required 

USFS contact 
or external 
resource 

Evaluation 

FSim FSim is a large-scale 
fire simulator. It models 
burn probabilities and 
fire size distribution 
based on fuel, 
topography, and 
weather data. It can 
include fire ignition 
and suppression as 
stochastic processes. 

Weather and ignition 
inputs are generated 
within the software 
based on provided data. 
The user must create 
a spatial landscape file 
including information 
on topography and fuels 
(surface and canopy); 
national-scale datasets 
are available through 
LANDFIRE, but require 
user modification to 
represent management 
effects on fuels. Finer-
scale local data should 
be used instead of 
LANDFIRE where 
available. 

FSim produces 
raster outputs of 
the annual burn 
probability and 
the conditional 
flame-length 
probabilities of 
six flame-length 
classes. It also 
creates vector 
outputs of the 
final wildfire 
perimeters 
of the fires 
generated with 
associated 
attributes. 

To use FSim outputs 
for smoke dispersion 
modeling in HYSPLIT, 
the user will need 
to identify specific 
fire locations and 
sizes from the burn 
probability and fire 
size outputs. This 
will require decisions 
about cutoffs in 
burn probability and 
manipulation of the 
spatial output data. 
HYSPLIT also requires 
a burn duration for 
each fire, which is 
not an FSim output. 
Therefore, the user 
will need to estimate 
these, possibly based 
on literature. 

The FSim software 
is free, and it 
is possible to 
run FSim with 
nationally available 
data, but some 
data processing will 
be required to get 
the data into the 
required format. 
Subject matter 
expertise and 
geospatial skills 
will be needed to 
link FSim outputs 
to other predictive 
models. 

Karen Short, 
Rocky 
Mountain 
Research 
Station 

Finney et 
al. (2010) 
validated 
burn 
probability 
from 
historical 
records for 
fire planning 
units across 
the U.S. 

8 



 
 

 

 
 

 

 
 

 

  

 

 

 
 

 

 
 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Table 1. Predictive Model Summaries: Fuel and Fire Dynamics (continued) 

Model name Short description Data requirements Model outputs Connectivity to other 
models Capacity required 

USFS contact 
or external 
resource 

Evaluation 

The 
Interagency 
Fuel 
Treatment 
Decision 
Support 
System, 
Landscape 
Burn 
Probability 
(IFTDSS LBP) 

Landscape Burn 
Probability (LBP), 
modeled by IFTDSS, 
quantifies the relative 
likelihood and intensity 
of a fire occurring 
under a fixed set of 
weather and fuel 
moisture conditions. 
Different than FSim— 
IFTDS LBP calculates 
burn probability and 
conditional flame 
length for a fixed set 
of weather conditions 
for a single burn 
period. The Large 
Fire Simulation Model 
used in many national, 
regional, and unit 
level assessments, 
calculates results 
based on variable 
weather inputs for fires 
burning multiple days 
throughout an entire 
fire season. The model 
is driven by FlamMap. 

Inputs for wind, 
crown fire, initial fuel 
moisture, fuel moisture 
conditioning, simulation 
time, and spotting are 
required to run IFTDSS 
LBP. 

Burn probability, 
conditional 
flame length, 
and integrated 
hazard are the 
primary outputs, 
all of which 
are rasters. 
The integrated 
hazard raster 
can give some 
information 
on the risk of 
fire for various 
assets such as 
property. 

The model can 
accommodate data 
from the user such 
as shapefiles for 
study area, wind 
grids, and fuel loads. 
The interface for the 
model, Map Studio, 
comes with a plethora 
of publicly accessible 
data, especially 
pertinent to federal 
agencies. 

Unlike FSim, 
INFTDSS LBP 
appears to be 
less known by the 
public but more 
widely used by 
members of the 
USFS. The model 
can be run without 
user-specified 
data or geospatial 
software through 
the Map Studio 
interface. The 
tutorials and model 
documentation 
make it relatively 
easy to use. 

Matthew 
Thompson, 
Rocky 
Mountain 
Research 
Station 

LBP uses 
the same 
fire spread 
algorithm 
as FlamMap 
MTT. This 
algorithm 
has been 
validated for 
a range of 
sites (Arca 
et al. 2007; 
Andrews 
2009; Salis et 
al. 2013). 
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Table 1. Predictive Model Summaries: Fuel and Fire Dynamics (continued) 

Model name Short description Data requirements Model outputs Connectivity to other 
models Capacity required 

USFS contact 
or external 
resource 

Evaluation 

LANDIS-II The Dynamic Fuel The Fuel Systems Outputs include The Dynamic Fire LANDIS-II is free but Brian None 
Dynamic System Extension Extension requires the raster layers of System extension can only be accessed Sturtevant, found. 
Fuel System classifies sites into user to select a duration fuel types, percent requires active sites with membership Northern 
Extension different fuel types 

based on species age, 
conifer mortality, 
and post disturbance 
information. The 
Dynamic Fuel System 
Extension is designed 
to produce input for 
the Dynamic Fire 
System Extension. 

in years, species fuel 
coefficients from field 
data, and a fuel type 
table. 

confier, and percent 
dead fir to be used 
in the Fire System 
Extension. 

to fuel types being 
assigned. Therefore, 
the Dynamic Fuel 
System extension 
should be run 
immediately before 
Dynamic Fire System 
extension. 

to the LANDIS-II 
User group. External 
consultants are 
typically necessary to 
generate sophisticated 
results given the 
complexity of the input 
data. The software can 
be run on a standard 
PC. 

Research 
Station 

LANDIS-II The Dynamic Fire The Dynamic Fire The Dynamic Fire Output from the LANDIS-II is free but Brian Syphard 
Dynamic System Extension System Extension System Extension Dynamic Fuel System can only be accessed Sturtevant, et al. 2011 
Fire System simulates large requires more generates Fire Extension is a with membership Northern calibrated 
Extension scale and long-

term fire pattern, 
in terms of fire 
occurrences, burned 
area, weather, fire 
severity and damage. 
Based on multiple 
submodels, it offers a 
holistic simulation of 
various processes of 
forest fire. 

information for the 
ecoregion input file than 
the standard LANDIS-
II run. User should 
specify duration/size 
distribution, maximum 
duration/size, fuel 
moisture code (FMC) 
properties, fuel type, 
and number of ignitions. 
This information should 
be collected in the 
field or prescribed. 
Other field data 
necessary include an 
initial weather table, a 
dynamic weather table, 
fuel type table, severity 
calibration factor, and a 
fire damage table. Many 
of these inputs are 
created by the LANDIS-II 
Dynamic Fuel System 
Extension. 

Severity Map raster 
layers for each time 
step, summary 
tables by event, and 
summary tables by 
time step. Tables 
are .csv files. 

compulsory input for 
Dynamic Fire System 
Extension. 

to the LANDIS-II 
User group. External 
consultants are 
typically necessary to 
generate sophisticated 
results given the 
complexity of the input 
data. The software can 
be run on a standard 
PC. 

Research 
Station 

predicted 
fire 
frequency 
and fire 
sizes 
based on 
historical 
means 
for the 
southern 
Sierra 
Nevada 
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Table 1. Predictive Model Summaries: Fuel and Fire Dynamics (continued) 

Model name Short description Data requirements Model outputs Connectivity to other 
models Capacity required 

USFS contact 
or external 
resource 

Evaluation 

LANDIS- The SCRAPPLE SCRAPPLE requires SCRAPPLE creates SCRAPPLE is able LANDIS-II is free but https:// Scheller et 
II Social extension of LANDIS- the user to define a raster layers to model both the can only be accessed sites.google. al. (2019) 
Climate II models three duration and provide showing the dynamic processes with membership com/site/ validated 
Related different types of raster layers of historical day of fires, fire of prescribed fires, to the LANDIS-II landismodel/ model 
Pyrogenic fires: Lightning, accidental ignitions, intensity, and fire lacked by the Base User group. External extensions/ outputs 
Processes Human Unintentional historical lightning ignition type. It Harvest Extension, consultants are scrapple against 
and Their (“Accidental”) and ignitions, prescribed also generates a and the interactions typically necessary to historical 
Landscape Prescribed Fire fire ignitions, accidental fire ignition table between prescribed generate sophisticated fire 
Effects (“RxFire”). The three suppression, lightning by time step, a fires and other results given the regimes 
(SCRAPPLE) types of fires behave suppression, prescribed summary table fires, lacked by the complexity of the input for the 
Extension similarly in turns of 

spread and mortality, 
and differently in 
terms of ignition and 
suppression. 

fire suppression, a 
suppressions table, 
dead wood table, and 
damage table. 

by event, and a 
summary table by 
time step. 

Dynamic Fires System 
Extension. 

data. The software can 
be run on a standard 
PC. 

Lake Tahoe 
Basin 
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Table 2. Predictive Model Summaries: Forest Dynamics and Timber Harvest 

Model name Short description Data requirements Model outputs Connectivity to 
other models Capacity required USFS contact or 

external resource Evaluation 

LANDIS-II LANDIS-II simulates 
forest landscapes 
with consideration 
of ecological 
processes including 
natural succession, 
seed dispersal, 
disturbances and 
climate change. Core 
framework defines 
the data structure 
that represent 
forest landscape. 
Extensions exists as 
separate processes 
to be modeled in the 
landscape. LANDIS-II 
is a pre-programmed 
model designed to 
simulate large scale 
(>105 ha) landscape 
pattern dynamics. 

LANDIS-II requires the user 
to provide input files for 
the scenario, species, and 
ecoregions as well as an 
ecoregions map to specify 
location, a table specifying 
any extensions used, and 
an initialization file with the 
input parameters for the 
extensions. The scenario 
input file is created by 
the user to detail a model 
run, including information 
on time steps, cell size, 
extensions, and a directory 
to the species, ecoregion, 
and initialization files. The 
species input file is a table 
containing the tree species 
of interest and is typically 
created with field data. 
The ecoregion input file is 
also a table with the name, 
code, and description of the 
landscape classes found in 
the study area. This data 
can be taken from publicly 
available datasets. 

LANDIS-II 
generates maps 
for each time step 
with the change in 
land cover based 
on the specified 
disturbance or 
succession. 

LANDIS-II is 
designed to work 
seamlessly with 
the LANDIS-
II extensions 
described 
as separate 
models (biomass 
succession, base 
harvest extension, 
dynamic fuel 
system extension, 
dynamic fire 
system extension, 
and SCRAPPLE). 

LANDIS-II is free 
but can only be 
accessed with 
membership to 
the LANDIS-II User 
group. External 
consultants are 
typically necessary 
to generate 
sophisticated 
results given the 
complexity of the 
input data. The 
software can be 
run on a standard 
PC. 

Eric Gustafson, 
Northern Research 
Station 

See 
validation 
for specific 
modules in 
this section 
and the 
previous 
section. 

LANDIS-II The Biomass In addition to the standard The Biomass This extension LANDIS-II is free https://sites. Simons-
Biomass Succession Extension LANDIS-II inputs, the Succession works seamlessly but can only be google.com/site/ Legaard et 
Succession of LANDIS-II simulates 

forest growth and 
predicts Above 
Ground Biomass (AGB) 
annually based on 
growth, competition, 
senescence and 
mortality of cohorts. 

user should also provide 
a climate configuration 
file, mortality percentage, 
minimum relative biomass 
table, sufficient light tables, 
species parameter table, 
ecoregion parameter table, 
fire reduction parameter 
table, harvest reduction 
parameter tables, dynamic 
input data table, and initial 
community class. These 
data must be obtained 
through field collection. 

extensions 
generates 
aboveground 
biomass annual 
net primary 
productivity as a 
raster image and 
a summary table 
showing the time 
step, ecoregion, 
number of active 
sites, average total 
above ground 
live biomass, 
average NPP, and 
average total litter 
biomass. 

with LANDIS-II 
and the other 
extensions 
described as 
separate models. 

accessed with 
membership to 
the LANDIS-II User 
group. External 
consultants are 
typically necessary 
to generate 
sophisticated 
results given the 
complexity of the 
input data. The 
software can be 
run on a standard 
PC. 

landismodel/ 
extensions/ 
biomass-
succession 

al. (2015) did 
a sensitivity 
analysis 
of 9 key 
parameters, 
but no 
validation. 

12 

https://sites.google.com/site/landismodel/extensions/biomass-succession
https://sites.google.com/site/landismodel/extensions/biomass-succession
https://sites.google.com/site/landismodel/extensions/biomass-succession
https://sites.google.com/site/landismodel/extensions/biomass-succession
https://sites.google.com/site/landismodel/extensions/biomass-succession
https://sites.google.com/site/landismodel/extensions/biomass-succession


 

 

 
 
 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 
 

 

 

 

 

 
 

Table 2. Predictive Model Summaries: Forest Dynamics and Timber Harvest (continued) 

Model name Short description Data requirements Model outputs Connectivity to 
other models Capacity required USFS contact or 

external resource Evaluation 

LANDIS-II The Base Harvest The Base Harvest Extension The Base Harvest This extension LANDIS-II is free Eric Gustafson, None found. 
Base Harvest Extension of LANDIS- requires a prescriptions extension works seamlessly but can only be Northern Research 
Extension II simulates a wide 

range of management 
prescriptions, such as 
prescribed burning, 
thinning, single-tree 
selection and clear-
cutting. The simulation 
is implemented 
in the context of 
management areas 
(MA). Within each 
management area, the 
same prescriptions 
are applied for each 
eligible stand (group 
of cells) as prioritized 
using specific ranking 
algorithms, until the 
target proportion 
of the MA has been 
cut. In existence of 
multiple prescriptions, 
the order of 
implementation is 
determined through 
a stochastic process, 
with the chance of 
being implemented 
proportional to the 
total area to harvest in 
the prescription. 

Input file as defined by 
the user with at least 
prescription name, stand 
rankings, site selection, and 
cohorts removed. User has 
the option to select further 
parameters. User should 
also supply the duration, 
management area, stand 
delineations, and harvest 
implementation tables. 

generates a 
prescription map 
for each time step, 
a summary table 
by event, and a 
summary table by 
time step. 

with LANDIS-II 
and the other 
extensions 
described as 
separate models. 

accessed with 
membership to 
the LANDIS-II User 
group. External 
consultants are 
typically necessary 
to generate 
sophisticated 
results given the 
complexity of the 
input data. The 
software can be 
run on a standard 
PC. 

Station 
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Table 3. Predictive Model Summaries: Air Quality and Health Effects 

Model name Short description Data requirements Model outputs Connectivity to 
other models Capacity required 

USFS contact 
or external 
resource 

Evaluation 

HYSPLIT HYSPLIT is a group 
of models and tools 
that can compute 
atmospheric 
transport and 
dispersion. It is 
commonly used 
to simulate the 
transport and 
dispersion of 
pollutants and 
hazardous materials, 
including smoke from 
wildfires. It uses a 
hybrid computational 
approach including 
a moving frame 
of reference for 
calculating advection 
and diffusion and 
a fixed three-
dimensional grid to 
compute air pollutant 
concentrations. 
Dispersion is 
influenced by 
meteorological 
variables and the 
location, duration, 
and size of the 
release. 

HYSPLIT provides the 
model inputs for the 
user to select from 
including release 
type of particulate, 
source location, 
meteorological 
conditions, etc. 

HYSPLIT generates 
a concentration 
grid, deposition 
grid, and 
emissions file. 
The concentration 
and deposition 
grids are provided 
as an image 
and shapefile of 
contours and are 
subject to the time 
period selected 
by the user. 
The emissions 
file reports the 
emission rate 
(mass/hour) at 
three-minute 
intervals for the 
emission source 
location (includes 
spatial reference 
in file). 

HYSPLIT outputs 
can be used 
in BenMAP to 
determine health 
impacts of air 
quality changes. 
FSim outputs can 
inform user input 
in HYSPLIT to 
model predicted 
fires. 

HYSPLIT is free and 
available as either 
an online tool or a 
desktop client. No 
data processing 
or local capacity 
is required for the 
online version. Some 
data processing 
(i.e., identifying 
meteorological 
datasets) is required 
for the desktop 
version. No GIS 
skills are needed 
to run HYSPLIT, 
though some subject 
matter expertise is 
beneficial. 

https://www. 
ready.noaa.gov/ 
HYSPLIT.php 

HYSPLIT is a 
component 
of the NOAA 
Smoke 
Forecasting 
System; 
predicted 
smoke extent 
is regularly 
compared 
with observed 
smoke 
plumes, e.g. 
Rolph et al. 
2009 
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Table 3. Predictive Model Summaries: Air Quality and Health Effects (continued) 

Model name Short description Data requirements Model outputs Connectivity to 
other models Capacity required 

USFS contact 
or external 
resource 

Evaluation 

Community CMAQ is an active CMAQ requires at CMAQ generates Inputs of emission Requires expert Bret Anderson, Hu et al. 
Multiscale Air open-source least two primary estimates of rates could come knowledge to run. Air Resource (2008) 
Quality Modeling development project inputs: meteorological quantity, location, from Landis, Hosted by the EPA. Management compared air 
System (CMAQ) of the U.S. EPA that 

consists of a suite 
of programs for 
conducting air quality 
model simulations. 
CMAQ combines 
atmospheric science, 
air quality modeling, 
and multiprocessor 
computing techniques 
to deliver fast, 
technically sound 
estimates of ozone, 
particulate matter, 
toxic compounds 
and acid deposition 
throughout the 
troposphere. 

information 
(temperature, 
wind, precipitation, 
etc.), and emission 
rates from sources 
of emissions that 
affect air quality. 
Meterological inputs 
are provided by 
supported models. 

and movemnet 
of air pollutants 
including ozone, 
particulates, 
toxics, and acid 
deposition. Most 
output files use 
the I/O API netCDF 
file format. The 
CMAQ user 
manual suggests 
numerous 
external tools 
for visualizing, 
analyzing, and 
processing output 
files. 

FlamMap, and 
FSim. Outputs can 
inform BenMap. 

quality effects 
of prescribed 
fires near 
Atlanta 
predicted by 
CMAQ with 
measured air 
quality. 

Comprehensive 
Air Quality Model 
with Extensions 
(CAMx) 

CAMx addresses 
air pollution issues 
involving inert and 
chemically derived 
compounds such as 
ozone, particulate 
matter and air toxics 
over a range of 
geographic scales 
and time periods. 
CAMx treats complex 
chemical interactions 
among directly 
emitted emissions 
from anthropogenic 
and natural sources, 
and their chemical 
products. It is an 
open-source system. 

Meteorological 
inputs are supplied 
to CAMx from 
separate weather 
prediction models 
(specifically WRF, 
MM5 and RAMS are 
supported). Emission 
inputs are supplied 
from external pre-
processing systems 
(e.g., SMOKE and 
EPS3). As a limited-
area deterministic 
model, CAMx requires 
specification of initial 
conditions at the 
start of a simulation 
period, and boundary 
conditions at the 
edge of the modeling 
domain. These data 
can be derived using 
output from global 
chemical transport 
models. 

CMAQ generates 
estimates of 
quantity, location, 
and movement 
of air pollutants 
including ozone, 
particulates, 
and air toxics. 
Output files use 
the netCDF file 
format and are 
compatible with 
EPA’s Models-3 I/O 
API. 

Inputs of emission 
rates could be 
informed by 
Landis, FlamMap, 
and FSim. Outputs 
can inform 
BenMap. 

Requires expert 
knowledge to run. 
Publicly accessible 
and free to use. 

Bret Anderson, 
Air Resource 
Management 

Johnson et 
al. (2017) 
evaluated 
CAMx ozone 
predictions 
in Texas with 
and without 
fire influence 
by comparing 
with observed 
data. 
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Table 3. Predictive Model Summaries: Air Quality and Health Effects (continued) 

Model name Short description Data requirements Model outputs Connectivity to 
other models Capacity required 

USFS contact 
or external 
resource 

Evaluation 

IMPROVE The IMPROVE Concentrations of Light extinction, Concentrations The IMPROVE See Pitchford et Algorithm 
algorithm algorithm estimates 

light extinction based 
on the concentration 
of major air quality 
components. It was 
developed by the 
EPA as the basis 
for a regional haze 
metric (the deciview 
haze index). The 
current version 
of the algorithm 
was developed by 
Pitchford et al. in 
2007. 

various air quality 
components: small 
ammonium sulfate, 
large ammonium 
sulfate, small 
ammonium nitrate, 
large ammonium 
nitrate, small organic 
mass, large organic 
mass, elemental 
carbon, fine soil, 
sea salt, coarse 
mass, and NO2. 
Relative humidity 
data to calculate 
hygroscopicity values 
for sulfate, nitrate, 
and sea salt (site-
specific monthly 
hygroscopicity values 
for visibility protected 
areas are available 
from EPA where 
relative humidity 
data is unavailable). 
Site-specific Rayleigh 
scattering value 
(available from EPA 
for visibility protected 
areas). 

inverse 
Megameters 

of air quality 
components can 
be taken from 
air quality model 
(e.g., CMAQ, CAMx) 
outputs. 

algorithm is a simple 
equation; no special 
software or expertise 
is required. 

al. 2007 performance 
was evaluated 
by comparing 
predicted light 
scattering 
with 
measured 
light 
scattering for 
21 monitoring 
sites 
(Pitchford et 
al. 2007). 

16 



  

 

 

 

 

 

 

 

 

 

 

 
 

 

 
 

 
  

 

 

 

 
 

 

 

 

 

 

 
 

 
 

 
 

 

Table 3. Predictive Model Summaries: Air Quality and Health Effects (continued) 

Model name Short description Data requirements Model outputs Connectivity to 
other models Capacity required 

USFS contact 
or external 
resource 

Evaluation 

BenMAP- BenMAP uses User must input an BenMAP creates The air quality BenMAP software is https://www. BenMAP-
Community air quality data air quality baseline maps, data tables, change grid free and can be run epa.gov/benmap CE creates 
Edition to calculate the 

change in pollutant 
concentrations, then 
relates the change 
to health effects 
using concentration-
response functions. 
These take into 
account the change 
in air quality, the 
change in risk of 
health effects, the 
population exposed 
to the air quality 
change, and the 
baseline incidence 
of health effects. 
BenMAP also 
estimates the value 
of the health effects 
based on the value 
of a statistical life 
or medical costs of 
illness. 

grid and change 
grid. User specifies 
spatial and temporal 
aspects of the grids 
including a table 
with the geographic 
location, metric type 
(e.g., 1-hour daily 
maximum), and 
metric values (string 
of appropriate length, 
e.g., 365 values for 
daily data). The EPA 
meteorological grid 
can be used to set the 
baseline; the change 
grid can be derived 
from the baseline 
or from results of 
other models such 
as HYSPLIT (smoke 
dispersion). BenMAP 
provides population 
data, health impact 
functions, and 
baseline health 
incidence rates 
inputs. 

and bar charts 
with predictions 
of health impact 
results for the 
study area, 
incidence results, 
and valuation 
results. Incidence 
results can be 
exported as 
raw incidence, 
aggregated 
incidence, and 
pooled incidence. 
Valuation results 
can also be 
exported as raw, 
aggregated, or 
pooled. BenMAP 
also creates an 
Audit Trail Report 
to track the 
analysis inputs and 
selected scenarios. 

(required as an 
input) can be 
calculated from 
the output air 
quality component 
concentrations of 
other air quality 
models (CMAQ, 
CAMx, HYSPLIT). 

with publicly available 
data, though some 
subject matter 
expertise is ideal. 
Geospatial modelling 
skills will aid in 
creating the “control” 
baseline dataset and 
linking it to the smoke 
dispersion model 
(HYSPLIT). 

uncertainty 
distributions 
for both 
health effect 
incidence and 
economic 
value, as 
described 
in the user’s 
manual 
(BenMAP 
2018) 
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Table 4. Predictive Model Summaries: Hydrology and Flooding 

Model 
name Short description Data requirements Model outputs 

Connectivity 
to other 
models 

Capacity required 
USFS contact 
or external 
resource 

Evaluation 

SWAT SWAT models sediment, 
nutrition, and runoff 
processes based on 
topography, land use and 
weather, at watershed to river 
basin scale. It is commonly 
used to examine the impacts 
of land use change and 
management practices. 

SWAT provides many 
of the model inputs for 
the user to choose from 
including soil types, 
watershed delineations, 
and weather generator 
data. The user should 
provide elevation, slope, 
land cover, temperature 
and precipitation, 
humidity, and wind 
data. All of these can be 
found in national public 
datasets. 

SWAT generates 
tables with 
an annual 
summary by 
monthly average 
of sediment, 
nutrition, and 
runoff for the 
study area. 

SWAT runoff 
estimates can 
be used to 
generate flood 
depth grid 
for input to 
HAZUS. 

SWAT is free 
and can be run 
with different 
user interfaces 
including ArcGIS 
and QGIS. Some 
subject matter and 
modeling expertise 
is required. SWAT 
can be run on 
a standard PC. 
SWAT is very data 
intensive and 
requires training to 
use effectively. 

https://swat. 
tamu.edu/ 

SWAT is widely 
used and has 
been evaluated 
by comparison 
to observed 
flows and 
sediment 
loading in 
a variety of 
contexts (Singh 
et al. 2015; 
Khanal and 
Parajuli 2013; 
Amatya and Jha 
2011). 

Spatial The STARS toolbox was STARS requires the same .ssn files to be STARS was ArcGIS version Dan Isaak, See SSN (next 
Tools developed to take advantage initial input data as used in SSN. designed 10.6 2 or later with Rocky Mountain row). 
for the of the FLoWS-based FLoWS: streams, survey to work in advanced license Research Station 
Analysis landscape network and sites, and a filled DEM. conjunction and the Spatial 
of River provides tools to generate Users can incorporate with FLows and Analyst extension 
Systems and format the feature data to fit covariates SSN. 3 required. Also 
(STARS) geometry, attribute data, 

and topological relationships 
of GIS datasets so that they 
may be used to fit spatial 
statistical models to streams 
data. The STARS tools 
create a new directory to 
store this information: an 
.ssn object. Once the data 
has been reformatted and 
exported as an .ssn, it can be 
imported and analyzed in the 
R environment for statistical 
computing and graphics. 

of stream temperature 
including stream 
water origin, topology, 
vegetation, climate, 
elevation, catchment 
area, etc. 

requires the STARS 
version 2.0.7 
geoprocessing 
toolbox for ArcGIS 4 
and Python version 
2.7.14 5. 
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Table 4. Predictive Model Summaries: Hydrology and Flooding (continued) 

Model 
name Short description Data requirements Model outputs 

Connectivity 
to other 
models 

Capacity required 
USFS contact 
or external 
resource 

Evaluation 

Spatial After the user formats stream Input data comes Predicted Inputs come SSN runs through R Dan Isaak, SSN has been 
Stream data in STARS, they can directly from STARS in stream directly from software and is free Rocky Mountain used to predict 
Network input it into SSN. SSN is an R .ssn file form. Users can temperature; STARS. to access. Research Station temperatures 
(SSN) package that allows users to 

calculate pair-wise distances 
and spatial weights based on 
topology, fit spatial statistical 
models to streams data where 
autocorrelation is based on 
three spatial relationships 
(Euclidean, flow-connected, 
and flow-unconnected), 
estimate relationships 
between variables, make 
predictions at unsampled 
locations, export spatial data 
for use in other software 
programs, and visualize the 
spatial data. 

incorporate data to fit 
covariates of stream 
temperature including 
stream water origin, 
topology, vegetation, 
climate, elevation, 
catchment area, etc. 
The NorWeST dataset 
provides stream 
temperature recordings 
across the western 
United States as well 
as sample models 
fitting environmental 
covariates. For the 
purposes of the USFS 
Management conceptual 
models, all relevant 
environmental covariates 
should be included 
as well as predicted 
changes in variables from 
management decisions. 

output formats 
vary depending 
on the user's 
needs, but they 
follow standard 
R options 
including .csv 
files, images 
(maps or 
other spatial 
representation, 
tables, graphs, 
etc. 

in streams 
throughout the 
western U.S. 
and validated 
with observed 
stream 
temperature 
data (Isaak et al. 
2010; Isaak et al. 
2017). 
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Table 4. Predictive Model Summaries: Hydrology and Flooding (continued) 

Model 
name Short description Data requirements Model outputs 

Connectivity 
to other 
models 

Capacity required 
USFS contact 
or external 
resource 

Evaluation 

HAZUS The HAZUS methodology 
was originally developed 
for the Federal Emergency 
Management Agency (FEMA) 
by the National Institute 
of Building Sciences to 
provide a tool for developing 
earthquake loss estimates. 
Models for similar estimates 
for flood damages have 
been developed. HAZUS 
is a nationally applicable 
standardized methodology 
that uses Geographic 
Information Systems (GIS) 
technology to estimate 
physical, economic, and 
social impacts of disasters 
including casualties. HAZUS 
flood models can be limited 
to riverine only (the model 
is typically used for coastal 
flood scenarios). The model 
can be applied to small or 
large geographic ranges. 

HAZUS asks the user to 
define or provide a study 
region, which can be 
imported as a shapefile. 
User should provide a 
DEM and a flood hazard 
depth grid if possible. 
The user also has the 
option to define specific 
buildings or facilities 
that are not included 
in the default HAZUS 
maps. HAZUS provides 
hydrology and hydraulic 
methodology as a 
substitute for user data 
but it is less preferable to 
local data. 

HAZUS predicts 
a wide range 
of outputs 
including 
flood hazard 
maps, damage 
to property 
(cars, facilities, 
infrastructure, 
agriculture), 
and number of 
people harmed 
or displaced. 

Runoff 
estimates 
from SWAT 
can be used 
to construct 
a flood depth 
grid (using GIS 
tools) for input 
to HAZUS. 

HAZUS is free 
and available to 
public and private 
users. HAZUS 
recommends 
that users have 
some expertise 
in relevant fields 
such as hydrology, 
GIS, public health, 
engineering, etc. 
HAZUS requires GIS 
to run. 

https://www. 
fema.gov/hazus-
software 

Difficult to 
validate 
against actual 
flood damage 
because 
comprehensive 
detailed damage 
assessments 
are not always 
done, but 
Gutenson et al. 
(2015) compared 
HAZUS damage 
estimates with 
historic flood 
damage for 
two floods in 
Alabama. Tate 
et al. (2015) 
assessed 
sensitivity and 
uncertainty 
of the HAZUS 
flood damage 
component. 

20 

https://www.fema.gov/hazus-software
https://www.fema.gov/hazus-software
https://www.fema.gov/hazus-software


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 

 

 

 

 
 

 
 

 

 

 
 

 

 

 

Table 5. Predictive Model Summaries: Economic Effects 

Model name Short description Data requirements Model outputs Connectivity to 
other models Capacity required 

USFS contact 
or external 
resource 

Evaluation 

IMPLAN + IMPLAN estimates rates of Recreation: need # of For each Output timber Requires access to Henry Eichman, IMPLAN is 
FEAST/Aphy economic response (jobs, 

labor income, and effects on 
local/regional economies) 
from resource use and other 
human activities. It was 
initially developed within 
USFS and then privatized, 
but it still regularly used 
within USFS. It can estimate 
economic activity from a 
variety of sectors, including 
recreation, timber, and USFS 
expenditures. While specific 
methods vary, many of the 
calculations use “response 
coefficients” (provided 
within IMPLAN and regularly 
updated) to translate various 
activity metrics into jobs, 
labor income, and value 
added to the economy. The 
IMPLAN rates are combined 
with information on resource 
output/use within the FEAST/ 
Aphy spreadsheet tool. 

visits categorized by 
activity and visitation 
type, expenditure profiles 
for different activities and 
visitation types (available 
from National Visitor 
Use Monitoring), and 
response coefficients to 
translate expenditures 
to jobs (provided within 
IMPLAN). Timber: 
need volume of timber 
harvested, proportion 
of product that goes 
into specific processing 
sectors (can use TPO 
data or local data), and 
response coefficients 
to translate volumes 
into employment, labor 
income, and value-added 
estimates (provided 
within IMPLAN). USFS 
expenditures: budget 
expenditure data 
(salary and non-salary) 
for various categories, 
including restoration, is 
available internally. 

category 
(recreation, 
timber, USFS 
expenditures): 
# of jobs (direct 
and indirect) 
and labor 
income (direct 
and indirect) 
supported. 

harvest summary 
data from LANDIS-
II Base Harvest 
Extension can 
be used as input 
for the timber 
component of 
IMPLAN. 

IMPLAN (proprietary 
software) and 
knowledge of 
economics to run. 
The USFS Economic 
Analysis group 
regularly (annually 
with a 2-3–year lag 
due to timing of 
IMPLAN updates) 
at the forest level. 
Individual forests 
interested in doing 
scenario analysis 
with IMPLAN for 
planning purposes 
often work with 
regional economists 
or Enterprise 
economists to do so 
and can get access to 
IMPLAN. 

Economic 
Analysis 

widely used 
for economic 
impact 
assessments 
in the U.S.; 
accuracy 
of specific 
analyses 
depends on 
the validity 
of available 
national 
and regional 
coefficients 
to the 
study area 
(Berck and 
Hoffmann 
2002). 
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Table 5. Predictive Model Summaries: Economic Effects (continued) 

Model name Short description Data requirements Model outputs Connectivity to
other models Capacity required 

USFS contact 
or external 
resource 

Evaluation 

Benefit The USGS Benefit Transfer The only data required Economic value The presence or The Benefit Transfer https:// The validity 
Transfer Toolkit includes a database is the knowledge that estimate population of Toolkit is free and sciencebase.usgs. of a benefit 
Toolkit of studies assessing the 

total economic value of 
threatened, endangered, and 
rare species.as well as for 
certain recreational activities. 
It provides the location, 
species, valuation method, 
economic value estimate 
for each included value. 
The total number of species 
and recreational activities 
represented are limited, 
and total economic value for 
species can include both use 
and non-use value, but this 
information can be a starting 
point for a benefit transfer if 
values for a species or activity 
of interest are included. 

a certain species or 
recreational activity of 
interest exists in the 
study area (or is expected 
to exist under the 
management scenario). 

species of interest, 
as predicted by the 
species distribution 
models described 
below (MaxEnt, 
GJAM, and expert-
based models) 
can be used to 
determine where 
it makes sense to 
estimate the value 
of those species. 
While there are 
gaps in predictive 
models for 
estimating changes 
in recreational use 
from landscape or 
species variables 
(see gaps section 
below), field data or 
expert knowledge 
about recreational 
activity occurring 
in an area can 
be used with the 
BTT to estimate 
associated 
economic activity. 

simple to use. gov/benefit-
transfer/ 

transfer 
depends on 
the quality 
of the initial 
study and 
how similar 
the target 
context is 
to the study 
context in 
terms of the 
commodity 
being valued 
and the 
populations 
affected; 
studies 
assessing 
the validity 
of benefit 
transfers 
found errors 
ranging from 
0 to more 
than 100% 
(Rosenberger 
and Stanley 
2006). 
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Table 6. Predictive Model Summaries: Species Distribution Models 

Model 
name Short description Data requirements Model outputs Connectivity to 

other models Capacity required USFS contact or 
external resource Evaluation 

Maxent Maxent is an open-
source software that 
models species niches 
and distributions based 
on species occurrence 
data and environmental 
covariates. The machine-
learning algorithm is 
based on the maximum-
entropy approach, 
whereby the accepted 
distribution has the 
maximum entropy subject 
to certain constraints (the 
environmental covariates). 
If the assumptions of the 
model are met, the output 
can be interpreted as a 
predicted probability of 
presences or as predicted 
local abundance. 

Species occurrence 
data: presence, 
absence, or 
pseudoabsence 
points represented 
as a shapefile. 
Environmental 
covariates: raster 
grid for relevant 
environmental 
variables such 
as precipitation, 
temperature, 
elevation, land 
cover, canopy 
structure, soil 
type, etc. All of the 
raster grids must 
be snapped to the 
same projection 
and encompass the 
same study area. 

A map of 
predicted 
species 
abundance along 
with metrics 
for model 
performance. 

Maxent gives 
information on 
how species react 
under different 
environmental 
constraints, 
including changes 
in water quality 
and supply, forest 
cover, tree size 
distribution, and 
canopy structure. 
Data permitting, 
Maxent may 
estimate the 
distribution of 
populations for 
hunting, fishing, 
and wildlife 
viewing. 

Requires Maxent 
software (freely 
available) and the 
ability to create 
covariate grids and 
species occurrence 
data (GIS). 

https:// 
biodiversityinformatics. 
amnh.org/open_source/ 
maxent/ 

Maxent has 
been used for 
a wide variety 
of species and 
geographic 
locations. 
Phillips and 
Dudík (2008) 
tested Maxent 
with presence 
data for 226 
species from 
six regions. 

GJAM GJAM models species 
distribution response to 
environmental covariates. 
Unlike other SDMs, 
GJAM models multiple 
species simultaneously, 
and can accommodate 
combinations of discrete 
and continuous variables 
in a Bayesian framework. 
GJAM first parameterizes 
the response of 
species abundance to 
environmental covariates, 
and then predicts species 
abundance in a new 
environment. Jim Clark 
(NSOE and Statistical 
Science at Duke University) 
developed the model as an 
R package. 

Species occurrence 
data: discrete and/ 
or continuous 
(such as presence 
points, abundance 
points, basal area). 
Environmental 
covariates: raster 
grid for relevant 
environmental 
variables such 
as precipitation, 
temperature, 
elevation, land 
cover, canopy 
structure, soil type, 
etc. 

Parameter 
estimates 
(including error 
terms and MCMC 
chains) for each 
predictor, along 
with metrics 
for model 
performance. 
If predicting, 
a map of the 
likelihood 
of species 
abundance. 

GJAM gives 
information on 
how species react 
under different 
environmental 
constraints, 
including changes 
in water quality 
and supply, forest 
cover, tree size 
distribution, and 
canopy structure. 
Data permitting, 
GJAM may estimate 
the distribution 
of populations for 
hunting, fishing, 
and wildlife 
viewing. 

GJAM is run in 
the R statistical 
environment (install. 
packages(‘gjam’)). 

https://cran.r-project. 
org/web/packages/gjam/ 
vignettes/gjamVignette. 
html 

The 
introductory 
paper on 
GJAM (Clark 
et al. 2016) 
compares 
GJAM 
predictions 
with tree 
species 
data and 
microbiome 
communities. 
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 PREDICTIVE MODEL GAPS 

Some of the relationships represented in the ESCM do not have relevant predictive models. Quantitative information in the literature 
can help to fill some, but not all of these gaps (Figure 2). 

Figure 2. Predictive Model Gaps in the Ecosystem Service Conceptual Model for Fire and Timber Management on USFS 
Land 

Predictive model gaps 
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Relationships with Quantitative Information in the Literature 
Te following relationships lack predictive models, but there is some quantitative information 
about the relationship in the literature. In some cases, this is a predictive model that addresses 
some component of the relationship in the conceptual model but does not exactly match 
the relationship. For other relationships, there are remaining research gaps relevant to the 
relationship. Information in the literature may allow a researcher to quantify the relationship 
through rough “back of the envelope” calculations if they have relevant data and if the study area 
context is sufciently similar to the research context, but these judgments would require subject 
matter expertise. 

Forest cover, tree size distribution, canopy structure, and plant species composition à
Landscape aesthetics à Recreational activities 

While USFS manages for aesthetics (USFS 1995), it is difcult to consistently predict aesthetic 
outcomes from management actions or changes to ecosystem structure, or how aesthetics 
infuence use of landscapes for recreation. Several research studies have developed models to 
predict the aesthetic quality of landscapes in certain contexts, but none has been made available 
for broader use. Te predictive model with the greatest relevance for USFS management is the 
forest landscape aesthetic quality model (FLAQM), which uses artifcial neural networks to 
predict aesthetics of forest landscapes based on tree harvesting, livestock density, virgin forest, 
animal grazing, and tree species richness (Jahani 2019). Tis model was developed in Iran based 
on visitor surveys in a forest; it is likely not fully applicable to the USFS context, and it only 
exists within a research paper. A standardized assessment of forest aesthetics implemented in 
Polish forests by Dudek (2018) takes into account species composition, stand age, stand structure, 
humidity, slope, and other landscape features, but is specifc to European temperate forests. 
Aesthetic quality of urban-rural fringes has also been modeled based on survey responses to 
photos (Sahraoui et al. 2016). 

Prescribed burn à Tick population à Tick-borne disease 

Te process by which humans are infected with tick-borne disease is complex, involving tick 
abundance and activity, human exposure to ticks, the rate at which ticks attach to humans, 
tick infection rate, and the probability of human infection from a tick bite. Tere has been 
considerable research on these components, and predictive models exist for some of them 
(described below), but there are currently too many unknowns to allow modeling of the entire 
process. 

Several studies have examined the infuence of fre (both prescribed burns and wildfre) on 
tick activity and populations. So far, this research is constrained to specifc geographic areas 
(California, Illinois, Georgia, and Florida) (Gilliam et al. 2018; Gleim et al. 2014; MacDonald et 
al. 2018). Research has also focused on the risk of tick bites and disease. A 2018 study combined 
a tick activity model with 50,000 geolocated tick bite reports to map human exposure to ticks in 
the Netherlands. A follow-up study (currently in review) used the human exposure model along 
with tick hazard predictors to model risk of tick bites (Garcia-Marti et al. 2018; Garcia-Marti et al. 
in review). Te research group also estimated the probability of contracting Lyme disease afer a 
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tick bite based on tick engorgement, attachment duration, and detection of bacterial DNA in ticks 
(Hofuis et al. 2017). 

Prescribed burn à Escaped fire risk à Catastrophic fire risk 

Escaped fres are rare and caused by highly unpredictable factors (e.g., weather), as catalogued in 
a USFS report on escaped prescribed fres (Dether 2005); to our knowledge, there are no available 
predictive models to estimate this relationship. It may be sufcient to model escaped prescribed 
burns as a proportion of all prescribed burns, based on expert knowledge. One research paper 
proposed a probability-based model to determine the risk of wildfre, based on probability of 
fre occurrence, conditional probability of a large fre given ignition, and the unconditional 
probability of a large fre, but this was not designed with prescribed fre as an ignition source, and 
the required probabilities may not be available (unless based on expert opinion) (Preisler et al. 
2004). 

Wildlife populations and biodiversity à Recreational activities 

While the relationships between wildlife populations and the recreational activities that depend 
on certain wildlife species (such as fshing, hunting, and wildlife watching) seem intuitive, 
related research is relatively rare. A few studies have found correlations between increased fsh 
density and recreational fshing activity (Post et al. 2008) and number of rare bird species and 
birdwatching activity (Booth et al. 2011), but no models to predict recreational activity from 
wildlife populations were found. Some of the information in the Beneft Transfer Toolkit (USGS, 
more information included in the predictive model summary table) suggests that certain species 
are more desirable targets for fshing or hunting activity than others (participants are willing 
to pay more to engage in activity targeting these species), but it does not directly address the 
relationship between population levels and recreation. Since recreational use of USFS lands is 
ofen monitored, it may be more efective to assess management efects on recreational activity 
via monitoring rather than predictive modeling. 

Prescribed burn à Soil hydrophobia à Runoff 

Te efects of prescribed burns on soil hydrophobia and runof can be approximated by adjusting 
the Revised Universal Soil Loss Equation (USDA 2017), estimates soil loss as a factor of rainfall-
runof, soil erodibility, slope length, slope steepness, cover-management, and supporting 
practices. Te model was developed by the USDA to predict long-term, average-annual erosion 
by water for a broad range of farming, conservation, mining, construction, and forestry uses. 
It is embedded in a variety of models (e.g. SWAT) and can be modifed to account for the soil 
hydrology under diferent conditions. Te K factor is a measure of the inherent erodibility of a 
given soil. Following a burn, the soil may become hydrophobic, especially on north-facing slopes, 
decreasing the infltration capacity (Interagency Burned Area Response Team 2000). By adjusting 
the K factor, RUSLE may be used to determine changes in runof and erosion. Values for K 
typically range from 0.10 to 0.45 (high-sand and high-clay, undisturbed soils have the lowest 
values whereas high-silt, disturbed soils have the highest values; Renard 1991). Te severity of 
the burn will determine how much the K factor should be adjusted; an example of what such an 
approach might look like can be found in Miller et al. 2003. 
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Plant species composition and tree size distribution à Pine straw biomass à Non-timber forest 
products yield 

Te USDA estimates that pine stands typically yield 100-150 bales/acre (2 tons/acre) of pine straw 
annually, depending on conditions (USDA 2011). Te amount can vary from 60 bales/acre to as 
much as 200 bales/acre. Tree age, species, stand density, soil fertility, management inputs, and 
season can afect straw yields, but quantitative information on each of these factors’ efect on 
yields is not available. 

Harvest and thinning à Soil compaction 

Te heavy equipment used during forest harvest and thinning operations is known to cause soil 
compaction, and these efects have been measured at many forest sites (Page-Dumroese et al. 
2010, Shetron et al. 1988, Williamson and Neilsen 2000). However, no predictive models that 
specifcally address the soil compaction efects of harvest and thinning were found. Tere are 
predictive models of soil compaction developed for the agricultural context; one of these, SoilFlex, 
was tested in forests in northeastern France and found to perform adequately (Goutal et al. 2013). 
However, the model has not been widely tested in forests and it is not known how well it would 
perform in USFS contexts. 

Runoff à Water quality (bacteria) 

Tere are a variety of quantitative models that can predict pathogens in watersheds, including the 
SWAT microbial sub-model, but most are aimed at agricultural land uses (Niazi et al. 2015). Te 
SWAT sub-model was also developed for agricultural systems and has not been extensively tested 
in other types of land use (Sadeghi and Arnole 2002). One study did apply the model in areas of 
varying land-use type (including forest and residential), and found that it did not perform well 
until it was modifed to better refect bacterial growth patterns (Hwa Cho et al. 2016). 

Chemical treatment, runoff, and baseflow à Water quality (chemical) 

Several quantitative models are available to predict pesticide runof from agricultural felds, 
including PRZM, RZWQM, and OpusCZ (Zhang and Goh 2015). SWAT also has a pesticide 
module that estimates pesticide transport from agricultural areas to streams; while this SWAT 
module has been broadly implemented in agricultural contexts, no examples of implementation 
in forest systems were found (Wang et al. 2019). Because SWAT pesticide transport results are 
very sensitive to several parameters, including some that don’t have a physical meaning (so can’t 
be estimated from experiments) and some that are spatially heterogeneous, it would be difcult to 
obtain meaningful results in a new context, especially a non-agricultural one (Wang et al. 2019). 

Relationships without Quantitative Information in the Literature 
Te following relationships lack predictive models and quantitative information in the literature. 
Tis can be because the relationship is inherently difcult to measure or quantify, or because 
there has not been sufcient study of the relationship. 
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Biodiversity à Cultural and spiritual importance 

Quantifying cultural and spiritual signifcance without directly surveying the afected 
communities is very difcult; no related predictive models were found, and research is 
community-specifc and usually not applicable more broadly. Resources that describe the role of 
particular habitats, plants, and wildlife species in cultural and spiritual practices include Dean 
Moore 2007 and Forbes 2001. 

Water quality à Water-related illness or death 

Modeling waterborne bacterial infection is challenging for a number of reasons described by the 
CDC on their Current Waterborne Disease Burden Data and Gaps website (2017). In short, cases 
of disease cannot not be reliably ascribed to their means of contraction. Many waterborne disease 
can also be contracted through other means. Disease that are solely or primarily transmitted 
through water can be contracted by drinking water, environmental water (sprinkler systems, 
cleaning water, etc.), or recreational water (rivers, lakes, pools, etc.). Tere are also gaps in 
knowledge of disease incidence, because many nonfatal cases go unreported. Some predictive 
models related to pathogens in drinking water and subsequent waterborne disease have been 
developed (Jegatheesan et al. 2003, Messner et al. 2006) but these are at very small (drinking 
water treatment plant) or very large (national) scales and are not applicable to waterborne disease 
from other types of exposure, such as recreation. 

Catastrophic fire risk à Fire-related illness and death 

Injury and death directly caused by fre (not by fre-related respiratory efects, which are included 
in a diferent pathway) are extremely location-dependent and therefore difcult to predict. 
It is possible that insurance industry models examining this relationship exist, but these are 
proprietary and not available for general use. 

Prescribed burn à Mushroom population à Non-timber yield 

Morel mushrooms are valued for harvest, and evidence suggests that some species fruit 
prolifcally afer a fre, leading to increased harvest. While many studies have found high morel 
density following fres, a 2016 feld study in Yosemite National Park suggested that many of these 
are overestimates due to biased, unsystematic sampling (Larson et al. 2016). Te Larson et al. 
study developed a conceptual model of post-fre morel productivity that includes fre, soil, and 
plant community characteristics as well as pre-fre morel presence or absence, but did not include 
a quantitative model incorporating these factors. It also suggested that existing recreational 
harvest limits are quite conservative, and could likely be increased in post-fre years. 
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	Inputs for wind, crown fire, initial fuel moisture, fuel moisture conditioning, simulation time, and spotting are required to run IFTDSS LBP. 
	Burn probability, conditional flame length, and integrated hazard are the primary outputs, all of which are rasters. The integrated hazard raster can give some information on the risk of fire for various assets such as property. 
	The model can accommodate data from the user such as shapefiles for study area, wind grids, and fuel loads. The interface for the model, Map Studio, comes with a plethora of publicly accessible data, especially pertinent to federal agencies. 
	Unlike FSim, INFTDSS LBP appears to be less known by the public but more widely used by members of the USFS. The model can be run without user-specified data or geospatial software through the Map Studio interface. The tutorials and model documentation make it relatively easy to use. 
	Matthew Thompson, Rocky Mountain Research Station 
	LBP uses the same fire spread algorithm as FlamMap MTT. This algorithm has been validated for a range of sites (Arca et al. 2007; Andrews 2009; Salis et al. 2013). 
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	Model name 
	Model name 
	Model name 
	Short description 
	Data requirements 
	Model outputs 
	Connectivity to other models 
	Capacity required 
	USFS contact or external resource 
	Evaluation 

	LANDIS-II 
	LANDIS-II 
	The Dynamic Fuel 
	The Fuel Systems 
	Outputs include 
	The Dynamic Fire 
	LANDIS-II is free but 
	Brian 
	None 

	Dynamic 
	Dynamic 
	System Extension 
	Extension requires the 
	raster layers of 
	System extension 
	can only be accessed 
	Sturtevant, 
	found. 

	Fuel System 
	Fuel System 
	classifies sites into 
	user to select a duration 
	fuel types, percent 
	requires active sites 
	with membership 
	Northern 

	Extension 
	Extension 
	different fuel types based on species age, conifer mortality, and post disturbance information. The Dynamic Fuel System Extension is designed to produce input for the Dynamic Fire System Extension. 
	in years, species fuel coefficients from field data, and a fuel type table. 
	confier, and percent dead fir to be used in the Fire System Extension. 
	to fuel types being assigned. Therefore, the Dynamic Fuel System extension should be run immediately before Dynamic Fire System extension. 
	to the LANDIS-II User group. External consultants are typically necessary to generate sophisticated results given the complexity of the input data. The software can be run on a standard PC. 
	Research Station 

	LANDIS-II 
	LANDIS-II 
	The Dynamic Fire 
	The Dynamic Fire 
	The Dynamic Fire 
	Output from the 
	LANDIS-II is free but 
	Brian 
	Syphard 

	Dynamic 
	Dynamic 
	System Extension 
	System Extension 
	System Extension 
	Dynamic Fuel System 
	can only be accessed 
	Sturtevant, 
	et al. 2011 

	Fire System 
	Fire System 
	simulates large 
	requires more 
	generates Fire 
	Extension is a 
	with membership 
	Northern 
	calibrated 

	Extension 
	Extension 
	scale and longterm fire pattern, in terms of fire occurrences, burned area, weather, fire severity and damage. Based on multiple submodels, it offers a holistic simulation of various processes of forest fire. 
	-

	information for the ecoregion input file than the standard LANDISII run. User should specify duration/size distribution, maximum duration/size, fuel moisture code (FMC) properties, fuel type, and number of ignitions. This information should be collected in the field or prescribed. Other field data necessary include an initial weather table, a dynamic weather table, fuel type table, severity calibration factor, and a fire damage table. Many of these inputs are created by the LANDIS-II Dynamic Fuel System Ext
	-

	Severity Map raster layers for each time step, summary tables by event, and summary tables by time step. Tables are .csv files. 
	compulsory input for Dynamic Fire System Extension. 
	to the LANDIS-II User group. External consultants are typically necessary to generate sophisticated results given the complexity of the input data. The software can be run on a standard PC. 
	Research Station 
	predicted fire frequency and fire sizes based on historical means for the southern Sierra Nevada 
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	Model name 
	Model name 
	Model name 
	Short description 
	Data requirements 
	Model outputs 
	Connectivity to other models 
	Capacity required 
	USFS contact or external resource 
	Evaluation 

	LANDIS-
	LANDIS-
	The SCRAPPLE 
	SCRAPPLE requires 
	SCRAPPLE creates 
	SCRAPPLE is able 
	LANDIS-II is free but 
	https:// 
	https:// 

	Scheller et 

	II Social 
	II Social 
	extension of LANDIS-
	the user to define a 
	raster layers 
	to model both the 
	can only be accessed 
	sites.google. 
	sites.google. 

	al. (2019) 

	Climate 
	Climate 
	II models three 
	duration and provide 
	showing the 
	dynamic processes 
	with membership 
	com/site/ 
	com/site/ 

	validated 

	Related 
	Related 
	different types of 
	raster layers of historical 
	day of fires, fire 
	of prescribed fires, 
	to the LANDIS-II 
	landismodel/ 
	landismodel/ 

	model 

	Pyrogenic 
	Pyrogenic 
	fires: Lightning, 
	accidental ignitions, 
	intensity, and fire 
	lacked by the Base 
	User group. External 
	extensions/ 
	extensions/ 

	outputs 

	Processes 
	Processes 
	Human Unintentional 
	historical lightning 
	ignition type. It 
	Harvest Extension, 
	consultants are 
	scrapple 
	scrapple 

	against 

	and Their 
	and Their 
	(“Accidental”) and 
	ignitions, prescribed 
	also generates a 
	and the interactions 
	typically necessary to 
	historical 

	Landscape 
	Landscape 
	Prescribed Fire 
	fire ignitions, accidental 
	fire ignition table 
	between prescribed 
	generate sophisticated 
	fire 

	Effects 
	Effects 
	(“RxFire”). The three 
	suppression, lightning 
	by time step, a 
	fires and other 
	results given the 
	regimes 

	(SCRAPPLE) 
	(SCRAPPLE) 
	types of fires behave 
	suppression, prescribed 
	summary table 
	fires, lacked by the 
	complexity of the input 
	for the 

	Extension 
	Extension 
	similarly in turns of spread and mortality, and differently in terms of ignition and suppression. 
	fire suppression, a suppressions table, dead wood table, and damage table. 
	by event, and a summary table by time step. 
	Dynamic Fires System Extension. 
	data. The software can be run on a standard PC. 
	Lake Tahoe Basin 
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	Model name 
	Model name 
	Model name 
	Short description 
	Data requirements 
	Model outputs 
	Connectivity to other models 
	Capacity required 
	USFS contact or external resource 
	Evaluation 

	LANDIS-II 
	LANDIS-II 
	LANDIS-II simulates forest landscapes with consideration of ecological processes including natural succession, seed dispersal, disturbances and climate change. Core framework defines the data structure that represent forest landscape. Extensions exists as separate processes to be modeled in the landscape. LANDIS-II is a pre-programmed model designed to simulate large scale (>105 ha) landscape pattern dynamics. 
	LANDIS-II requires the user to provide input files for the scenario, species, and ecoregions as well as an ecoregions map to specify location, a table specifying any extensions used, and an initialization file with the input parameters for the extensions. The scenario input file is created by the user to detail a model run, including information on time steps, cell size, extensions, and a directory to the species, ecoregion, and initialization files. The species input file is a table containing the tree spe
	LANDIS-II generates maps for each time step with the change in land cover based on the specified disturbance or succession. 
	LANDIS-II is designed to work seamlessly with the LANDISII extensions described as separate models (biomass succession, base harvest extension, dynamic fuel system extension, dynamic fire system extension, and SCRAPPLE). 
	-

	LANDIS-II is free but can only be accessed with membership to the LANDIS-II User group. External consultants are typically necessary to generate sophisticated results given the complexity of the input data. The software can be run on a standard PC. 
	Eric Gustafson, Northern Research Station 
	See validation for specific modules in this section and the previous section. 

	LANDIS-II 
	LANDIS-II 
	The Biomass 
	In addition to the standard 
	The Biomass 
	This extension 
	LANDIS-II is free 
	https://sites. 
	https://sites. 

	Simons-

	Biomass 
	Biomass 
	Succession Extension 
	LANDIS-II inputs, the 
	Succession 
	works seamlessly 
	but can only be 
	google.com/site/ 
	google.com/site/ 

	Legaard et 

	Succession 
	Succession 
	of LANDIS-II simulates forest growth and predicts Above Ground Biomass (AGB) annually based on growth, competition, senescence and mortality of cohorts. 
	user should also provide a climate configuration file, mortality percentage, minimum relative biomass table, sufficient light tables, species parameter table, ecoregion parameter table, fire reduction parameter table, harvest reduction parameter tables, dynamic input data table, and initial community class. These data must be obtained through field collection. 
	extensions generates aboveground biomass annual net primary productivity as a raster image and a summary table showing the time step, ecoregion, number of active sites, average total above ground live biomass, average NPP, and average total litter biomass. 
	with LANDIS-II and the other extensions described as separate models. 
	accessed with membership to the LANDIS-II User group. External consultants are typically necessary to generate sophisticated results given the complexity of the input data. The software can be run on a standard PC. 
	landismodel/ extensions/ biomass-succession 
	landismodel/ extensions/ biomass-succession 

	al. (2015) did a sensitivity analysis of 9 key parameters, but no validation. 
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	Model name 
	Model name 
	Model name 
	Short description 
	Data requirements 
	Model outputs 
	Connectivity to other models 
	Capacity required 
	USFS contact or external resource 
	Evaluation 

	LANDIS-II 
	LANDIS-II 
	The Base Harvest 
	The Base Harvest Extension 
	The Base Harvest 
	This extension 
	LANDIS-II is free 
	Eric Gustafson, 
	None found. 

	Base Harvest 
	Base Harvest 
	Extension of LANDIS-
	requires a prescriptions 
	extension 
	works seamlessly 
	but can only be 
	Northern Research 

	Extension 
	Extension 
	II simulates a wide range of management prescriptions, such as prescribed burning, thinning, single-tree selection and clear-cutting. The simulation is implemented in the context of management areas (MA). Within each management area, the same prescriptions are applied for each eligible stand (group of cells) as prioritized using specific ranking algorithms, until the target proportion of the MA has been cut. In existence of multiple prescriptions, the order of implementation is determined through a stochast
	Input file as defined by the user with at least prescription name, stand rankings, site selection, and cohorts removed. User has the option to select further parameters. User should also supply the duration, management area, stand delineations, and harvest implementation tables. 
	generates a prescription map for each time step, a summary table by event, and a summary table by time step. 
	with LANDIS-II and the other extensions described as separate models. 
	accessed with membership to the LANDIS-II User group. External consultants are typically necessary to generate sophisticated results given the complexity of the input data. The software can be run on a standard PC. 
	Station 
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	Table 3. Predictive Model Summaries: Air Quality and Health Effects 
	Model name 
	Model name 
	Model name 
	Short description 
	Data requirements 
	Model outputs 
	Connectivity to other models 
	Capacity required 
	USFS contact or external resource 
	Evaluation 

	HYSPLIT 
	HYSPLIT 
	HYSPLIT is a group of models and tools that can compute atmospheric transport and dispersion. It is commonly used to simulate the transport and dispersion of pollutants and hazardous materials, including smoke from wildfires. It uses a hybrid computational approach including a moving frame of reference for calculating advection and diffusion and a fixed three-dimensional grid to compute air pollutant concentrations. Dispersion is influenced by meteorological variables and the location, duration, and size of
	HYSPLIT provides the model inputs for the user to select from including release type of particulate, source location, meteorological conditions, etc. 
	HYSPLIT generates a concentration grid, deposition grid, and emissions file. The concentration and deposition grids are provided as an image and shapefile of contours and are subject to the time period selected by the user. The emissions file reports the emission rate (mass/hour) at three-minute intervals for the emission source location (includes spatial reference in file). 
	HYSPLIT outputs can be used in BenMAP to determine health impacts of air quality changes. FSim outputs can inform user input in HYSPLIT to model predicted fires. 
	HYSPLIT is free and available as either an online tool or a desktop client. No data processing or local capacity is required for the online version. Some data processing (i.e., identifying meteorological datasets) is required for the desktop version. No GIS skills are needed to run HYSPLIT, though some subject matter expertise is beneficial. 
	https://www. ready.noaa.gov/ HYSPLIT.php 
	HYSPLIT is a component of the NOAA Smoke Forecasting System; predicted smoke extent is regularly compared with observed smoke plumes, e.g. Rolph et al. 2009 
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	Table 3. Predictive Model Summaries: Air Quality and Health Effects (continued) 
	Model name 
	Model name 
	Model name 
	Short description 
	Data requirements 
	Model outputs 
	Connectivity to other models 
	Capacity required 
	USFS contact or external resource 
	Evaluation 

	Community 
	Community 
	CMAQ is an active 
	CMAQ requires at 
	CMAQ generates 
	Inputs of emission 
	Requires expert 
	Bret Anderson, 
	Hu et al. 

	Multiscale Air 
	Multiscale Air 
	open-source 
	least two primary 
	estimates of 
	rates could come 
	knowledge to run. 
	Air Resource 
	(2008) 

	Quality Modeling 
	Quality Modeling 
	development project 
	inputs: meteorological 
	quantity, location, 
	from Landis, 
	Hosted by the EPA. 
	Management 
	compared air 

	System (CMAQ) 
	System (CMAQ) 
	of the U.S. EPA that consists of a suite of programs for conducting air quality model simulations. CMAQ combines atmospheric science, air quality modeling, and multiprocessor computing techniques to deliver fast, technically sound estimates of ozone, particulate matter, toxic compounds and acid deposition throughout the troposphere. 
	information (temperature, wind, precipitation, etc.), and emission rates from sources of emissions that affect air quality. Meterological inputs are provided by supported models. 
	and movemnet of air pollutants including ozone, particulates, toxics, and acid deposition. Most output files use the I/O API netCDF file format. The CMAQ user manual suggests numerous external tools for visualizing, analyzing, and processing output files. 
	FlamMap, and FSim. Outputs can inform BenMap. 
	quality effects of prescribed fires near Atlanta predicted by CMAQ with measured air quality. 

	Comprehensive Air Quality Model with Extensions (CAMx) 
	Comprehensive Air Quality Model with Extensions (CAMx) 
	CAMx addresses air pollution issues involving inert and chemically derived compounds such as ozone, particulate matter and air toxics over a range of geographic scales and time periods. CAMx treats complex chemical interactions among directly emitted emissions from anthropogenic and natural sources, and their chemical products. It is an open-source system. 
	Meteorological inputs are supplied to CAMx from separate weather prediction models (specifically WRF, MM5 and RAMS are supported). Emission inputs are supplied from external preprocessing systems (e.g., SMOKE and EPS3). As a limited-area deterministic model, CAMx requires specification of initial conditions at the start of a simulation period, and boundary conditions at the edge of the modeling domain. These data can be derived using output from global chemical transport models. 
	-

	CMAQ generates estimates of quantity, location, and movement of air pollutants including ozone, particulates, and air toxics. Output files use the netCDF file format and are compatible with EPA’s Models-3 I/O API. 
	Inputs of emission rates could be informed by Landis, FlamMap, and FSim. Outputs can inform BenMap. 
	Requires expert knowledge to run. Publicly accessible and free to use. 
	Bret Anderson, Air Resource Management 
	Johnson et al. (2017) evaluated CAMx ozone predictions in Texas with and without fire influence by comparing with observed data. 
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	Table 3. Predictive Model Summaries: Air Quality and Health Effects (continued) 
	Model name 
	Model name 
	Model name 
	Short description 
	Data requirements 
	Model outputs 
	Connectivity to other models 
	Capacity required 
	USFS contact or external resource 
	Evaluation 

	IMPROVE 
	IMPROVE 
	The IMPROVE 
	Concentrations of 
	Light extinction, 
	Concentrations 
	The IMPROVE 
	See Pitchford et 
	Algorithm 

	algorithm 
	algorithm 
	algorithm estimates light extinction based on the concentration of major air quality components. It was developed by the EPA as the basis for a regional haze metric (the deciview haze index). The current version of the algorithm was developed by Pitchford et al. in 2007. 
	various air quality components: small ammonium sulfate, large ammonium sulfate, small ammonium nitrate, large ammonium nitrate, small organic mass, large organic mass, elemental carbon, fine soil, sea salt, coarse mass, and NO2. Relative humidity data to calculate hygroscopicity values for sulfate, nitrate, and sea salt (site-specific monthly hygroscopicity values for visibility protected areas are available from EPA where relative humidity data is unavailable). Site-specific Rayleigh scattering value (avai
	inverse Megameters 
	of air quality components can be taken from air quality model (e.g., CMAQ, CAMx) outputs. 
	algorithm is a simple equation; no special software or expertise is required. 
	al. 2007 
	performance was evaluated by comparing predicted light scattering with measured light scattering for 21 monitoring sites (Pitchford et al. 2007). 
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	Table 3. Predictive Model Summaries: Air Quality and Health Effects (continued) 
	Model name 
	Model name 
	Model name 
	Short description 
	Data requirements 
	Model outputs 
	Connectivity to other models 
	Capacity required 
	USFS contact or external resource 
	Evaluation 

	BenMAP-
	BenMAP-
	BenMAP uses 
	User must input an 
	BenMAP creates 
	The air quality 
	BenMAP software is 
	https://www. 
	https://www. 

	BenMAP-

	Community 
	Community 
	air quality data 
	air quality baseline 
	maps, data tables, 
	change grid 
	free and can be run 
	epa.gov/benmap 
	epa.gov/benmap 

	CE creates 

	Edition 
	Edition 
	to calculate the change in pollutant concentrations, then relates the change to health effects using concentration-response functions. These take into account the change in air quality, the change in risk of health effects, the population exposed to the air quality change, and the baseline incidence of health effects. BenMAP also estimates the value of the health effects based on the value of a statistical life or medical costs of illness. 
	grid and change grid. User specifies spatial and temporal aspects of the grids including a table with the geographic location, metric type (e.g., 1-hour daily maximum), and metric values (string of appropriate length, e.g., 365 values for daily data). The EPA meteorological grid can be used to set the baseline; the change grid can be derived from the baseline or from results of other models such as HYSPLIT (smoke dispersion). BenMAP provides population data, health impact functions, and baseline health inci
	and bar charts with predictions of health impact results for the study area, incidence results, and valuation results. Incidence results can be exported as raw incidence, aggregated incidence, and pooled incidence. Valuation results can also be exported as raw, aggregated, or pooled. BenMAP also creates an Audit Trail Report to track the analysis inputs and selected scenarios. 
	(required as an input) can be calculated from the output air quality component concentrations of other air quality models (CMAQ, CAMx, HYSPLIT). 
	with publicly available data, though some subject matter expertise is ideal. Geospatial modelling skills will aid in creating the “control” baseline dataset and linking it to the smoke dispersion model (HYSPLIT). 
	uncertainty distributions for both health effect incidence and economic value, as described in the user’s manual (BenMAP 2018) 
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	Table 4. Predictive Model Summaries: Hydrology and Flooding 
	Table 4. Predictive Model Summaries: Hydrology and Flooding 
	Table 4. Predictive Model Summaries: Hydrology and Flooding (continued) 
	Table 4. Predictive Model Summaries: Hydrology and Flooding (continued) 

	Model name 
	Model name 
	Model name 
	Short description 
	Data requirements 
	Model outputs 
	Connectivity to other models 
	Capacity required 
	USFS contact or external resource 
	Evaluation 

	SWAT 
	SWAT 
	SWAT models sediment, nutrition, and runoff processes based on topography, land use and weather, at watershed to river basin scale. It is commonly used to examine the impacts of land use change and management practices. 
	SWAT provides many of the model inputs for the user to choose from including soil types, watershed delineations, and weather generator data. The user should provide elevation, slope, land cover, temperature and precipitation, humidity, and wind data. All of these can be found in national public datasets. 
	SWAT generates tables with an annual summary by monthly average of sediment, nutrition, and runoff for the study area. 
	SWAT runoff estimates can be used to generate flood depth grid for input to HAZUS. 
	SWAT is free and can be run with different user interfaces including ArcGIS and QGIS. Some subject matter and modeling expertise is required. SWAT can be run on a standard PC. SWAT is very data intensive and requires training to use effectively. 
	https://swat. tamu.edu/ 
	https://swat. tamu.edu/ 

	SWAT is widely used and has been evaluated by comparison to observed flows and sediment loading in a variety of contexts (Singh et al. 2015; Khanal and Parajuli 2013; Amatya and Jha 2011). 

	Spatial 
	Spatial 
	The STARS toolbox was 
	STARS requires the same 
	.ssn files to be 
	STARS was 
	ArcGIS version 
	Dan Isaak, 
	See SSN (next 

	Tools 
	Tools 
	developed to take advantage 
	initial input data as 
	used in SSN. 
	designed 
	10.6 2 or later with 
	Rocky Mountain 
	row). 

	for the 
	for the 
	of the FLoWS-based 
	FLoWS: streams, survey 
	to work in 
	advanced license 
	Research Station 

	Analysis 
	Analysis 
	landscape network and 
	sites, and a filled DEM. 
	conjunction 
	and the Spatial 

	of River 
	of River 
	provides tools to generate 
	Users can incorporate 
	with FLows and 
	Analyst extension 

	Systems 
	Systems 
	and format the feature 
	data to fit covariates 
	SSN. 
	3 required. Also 

	(STARS) 
	(STARS) 
	geometry, attribute data, and topological relationships of GIS datasets so that they may be used to fit spatial statistical models to streams data. The STARS tools create a new directory to store this information: an .ssn object. Once the data has been reformatted and exported as an .ssn, it can be imported and analyzed in the R environment for statistical computing and graphics. 
	of stream temperature including stream water origin, topology, vegetation, climate, elevation, catchment area, etc. 
	requires the STARS version 2.0.7 geoprocessing toolbox for ArcGIS 4 and Python version 2.7.14 5. 
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	Model name 
	Model name 
	Model name 
	Short description 
	Data requirements 
	Model outputs 
	Connectivity to other models 
	Capacity required 
	USFS contact or external resource 
	Evaluation 

	Spatial 
	Spatial 
	After the user formats stream 
	Input data comes 
	Predicted 
	Inputs come 
	SSN runs through R 
	Dan Isaak, 
	SSN has been 

	Stream 
	Stream 
	data in STARS, they can 
	directly from STARS in 
	stream 
	directly from 
	software and is free 
	Rocky Mountain 
	used to predict 

	Network 
	Network 
	input it into SSN. SSN is an R 
	.ssn file form. Users can 
	temperature; 
	STARS. 
	to access. 
	Research Station 
	temperatures 

	(SSN) 
	(SSN) 
	package that allows users to calculate pair-wise distances and spatial weights based on topology, fit spatial statistical models to streams data where autocorrelation is based on three spatial relationships (Euclidean, flow-connected, and flow-unconnected), estimate relationships between variables, make predictions at unsampled locations, export spatial data for use in other software programs, and visualize the spatial data. 
	incorporate data to fit covariates of stream temperature including stream water origin, topology, vegetation, climate, elevation, catchment area, etc. The NorWeST dataset provides stream temperature recordings across the western United States as well as sample models fitting environmental covariates. For the purposes of the USFS Management conceptual models, all relevant environmental covariates should be included as well as predicted changes in variables from management decisions. 
	output formats vary depending on the user's needs, but they follow standard R options including .csv files, images (maps or other spatial representation, tables, graphs, etc. 
	in streams throughout the western U.S. and validated with observed stream temperature data (Isaak et al. 2010; Isaak et al. 2017). 
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	Model name 
	Model name 
	Model name 
	Short description 
	Data requirements 
	Model outputs 
	Connectivity to other models 
	Capacity required 
	USFS contact or external resource 
	Evaluation 

	HAZUS 
	HAZUS 
	The HAZUS methodology was originally developed for the Federal Emergency Management Agency (FEMA) by the National Institute of Building Sciences to provide a tool for developing earthquake loss estimates. Models for similar estimates for flood damages have been developed. HAZUS is a nationally applicable standardized methodology that uses Geographic Information Systems (GIS) technology to estimate physical, economic, and social impacts of disasters including casualties. HAZUS flood models can be limited to 
	HAZUS asks the user to define or provide a study region, which can be imported as a shapefile. User should provide a DEM and a flood hazard depth grid if possible. The user also has the option to define specific buildings or facilities that are not included in the default HAZUS maps. HAZUS provides hydrology and hydraulic methodology as a substitute for user data but it is less preferable to local data. 
	HAZUS predicts a wide range of outputs including flood hazard maps, damage to property (cars, facilities, infrastructure, agriculture), and number of people harmed or displaced. 
	Runoff estimates from SWAT can be used to construct a flood depth grid (using GIS tools) for input to HAZUS. 
	HAZUS is free and available to public and private users. HAZUS recommends that users have some expertise in relevant fields such as hydrology, GIS, public health, engineering, etc. HAZUS requires GIS to run. 
	https://www. fema.gov/hazussoftware 
	https://www. fema.gov/hazussoftware 
	-


	Difficult to validate against actual flood damage because comprehensive detailed damage assessments are not always done, but Gutenson et al. (2015) compared HAZUS damage estimates with historic flood damage for two floods in Alabama. Tate et al. (2015) assessed sensitivity and uncertainty of the HAZUS flood damage component. 
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	Table 5. Predictive Model Summaries: Economic Effects 
	Model name 
	Model name 
	Model name 
	Short description 
	Data requirements 
	Model outputs 
	Connectivity to other models 
	Capacity required 
	USFS contact or external resource 
	Evaluation 

	IMPLAN + 
	IMPLAN + 
	IMPLAN estimates rates of 
	Recreation: need # of 
	For each 
	Output timber 
	Requires access to 
	Henry Eichman, 
	IMPLAN is 

	FEAST/Aphy 
	FEAST/Aphy 
	economic response (jobs, labor income, and effects on local/regional economies) from resource use and other human activities. It was initially developed within USFS and then privatized, but it still regularly used within USFS. It can estimate economic activity from a variety of sectors, including recreation, timber, and USFS expenditures. While specific methods vary, many of the calculations use “response coefficients” (provided within IMPLAN and regularly updated) to translate various activity metrics into
	visits categorized by activity and visitation type, expenditure profiles for different activities and visitation types (available from National Visitor Use Monitoring), and response coefficients to translate expenditures to jobs (provided within IMPLAN). Timber: need volume of timber harvested, proportion of product that goes into specific processing sectors (can use TPO data or local data), and response coefficients to translate volumes into employment, labor income, and value-added estimates (provided wit
	category (recreation, timber, USFS expenditures): # of jobs (direct and indirect) and labor income (direct and indirect) supported. 
	harvest summary data from LANDISII Base Harvest Extension can be used as input for the timber component of IMPLAN. 
	-

	IMPLAN (proprietary software) and knowledge of economics to run. The USFS Economic Analysis group regularly (annually with a 2-3–year lag due to timing of IMPLAN updates) at the forest level. Individual forests interested in doing scenario analysis with IMPLAN for planning purposes often work with regional economists or Enterprise economists to do so and can get access to IMPLAN. 
	Economic Analysis 
	widely used for economic impact assessments in the U.S.; accuracy of specific analyses depends on the validity of available national and regional coefficients to the study area (Berck and Hoffmann 2002). 
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	Table 5. Predictive Model Summaries: Economic Effects (continued) 
	Model name 
	Model name 
	Model name 
	Short description 
	Data requirements 
	Model outputs 
	Connectivity to other models 
	Capacity required 
	USFS contact or external resource 
	Evaluation 

	Benefit 
	Benefit 
	The USGS Benefit Transfer 
	The only data required 
	Economic value 
	The presence or 
	The Benefit Transfer 
	https:// 
	https:// 

	The validity 

	Transfer 
	Transfer 
	Toolkit includes a database 
	is the knowledge that 
	estimate 
	population of 
	Toolkit is free and 
	sciencebase.usgs. 
	sciencebase.usgs. 

	of a benefit 

	Toolkit 
	Toolkit 
	of studies assessing the total economic value of threatened, endangered, and rare species.as well as for certain recreational activities. It provides the location, species, valuation method, economic value estimate for each included value. The total number of species and recreational activities represented are limited, and total economic value for species can include both use and non-use value, but this information can be a starting point for a benefit transfer if values for a species or activity of interes
	a certain species or recreational activity of interest exists in the study area (or is expected to exist under the management scenario). 
	species of interest, as predicted by the species distribution models described below (MaxEnt, GJAM, and expert-based models) can be used to determine where it makes sense to estimate the value of those species. While there are gaps in predictive models for estimating changes in recreational use from landscape or species variables (see gaps section below), field data or expert knowledge about recreational activity occurring in an area can be used with the BTT to estimate associated economic activity. 
	simple to use. 
	gov/benefittransfer/ 
	gov/benefittransfer/ 
	-


	transfer depends on the quality of the initial study and how similar the target context is to the study context in terms of the commodity being valued and the populations affected; studies assessing the validity of benefit transfers found errors ranging from 0 to more than 100% (Rosenberger and Stanley 2006). 
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	Table 6. Predictive Model Summaries: Species Distribution Models 
	Model name 
	Model name 
	Model name 
	Short description 
	Data requirements 
	Model outputs 
	Connectivity to other models 
	Capacity required 
	USFS contact or external resource 
	Evaluation 

	Maxent 
	Maxent 
	Maxent is an open-source software that models species niches and distributions based on species occurrence data and environmental covariates. The machine-learning algorithm is based on the maximum-entropy approach, whereby the accepted distribution has the maximum entropy subject to certain constraints (the environmental covariates). If the assumptions of the model are met, the output can be interpreted as a predicted probability of presences or as predicted local abundance. 
	Species occurrence data: presence, absence, or pseudoabsence points represented as a shapefile. Environmental covariates: raster grid for relevant environmental variables such as precipitation, temperature, elevation, land cover, canopy structure, soil type, etc. All of the raster grids must be snapped to the same projection and encompass the same study area. 
	A map of predicted species abundance along with metrics for model performance. 
	Maxent gives information on how species react under different environmental constraints, including changes in water quality and supply, forest cover, tree size distribution, and canopy structure. Data permitting, Maxent may estimate the distribution of populations for hunting, fishing, and wildlife viewing. 
	Requires Maxent software (freely available) and the ability to create covariate grids and species occurrence data (GIS). 
	https:// biodiversityinformatics. amnh.org/open_source/ maxent/ 
	https:// biodiversityinformatics. amnh.org/open_source/ maxent/ 

	Maxent has been used for a wide variety of species and geographic locations. Phillips and Dudík (2008) tested Maxent with presence data for 226 species from six regions. 

	GJAM 
	GJAM 
	GJAM models species distribution response to environmental covariates. Unlike other SDMs, GJAM models multiple species simultaneously, and can accommodate combinations of discrete and continuous variables in a Bayesian framework. GJAM first parameterizes the response of species abundance to environmental covariates, and then predicts species abundance in a new environment. Jim Clark (NSOE and Statistical Science at Duke University) developed the model as an R package. 
	Species occurrence data: discrete and/ or continuous (such as presence points, abundance points, basal area). Environmental covariates: raster grid for relevant environmental variables such as precipitation, temperature, elevation, land cover, canopy structure, soil type, etc. 
	Parameter estimates (including error terms and MCMC chains) for each predictor, along with metrics for model performance. If predicting, a map of the likelihood of species abundance. 
	GJAM gives information on how species react under different environmental constraints, including changes in water quality and supply, forest cover, tree size distribution, and canopy structure. Data permitting, GJAM may estimate the distribution of populations for hunting, fishing, and wildlife viewing. 
	GJAM is run in the R statistical environment (install. packages(‘gjam’)). 
	https://cran.r-project. org/web/packages/gjam/ vignettes/gjamVignette. html 
	https://cran.r-project. org/web/packages/gjam/ vignettes/gjamVignette. html 

	The introductory paper on GJAM (Clark et al. 2016) compares GJAM predictions with tree species data and microbiome communities. 
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	PREDICTIVE MODEL GAPS 
	PREDICTIVE MODEL GAPS 
	Some of the relationships represented in the ESCM do not have relevant predictive models. Quantitative information in the literature can help to fill some, but not all of these gaps (Figure 2). 
	Figure 2. Predictive Model Gaps in the Ecosystem Service Conceptual Model for Fire Management and Timber Harvest on USFS Land 
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	Relationships with Quantitative Information in the Literature 
	Relationships with Quantitative Information in the Literature 
	Forest cover, tree size distribution, canopy structure, and plant species composition Landscape aesthetics à Recreational activities 
	à

	Prescribed burn à Tick population à Tick-borne disease 
	The process by which humans are infected with tick-borne disease is complex, involving tick abundance and activity, human exposure to ticks, the rate at which ticks attach to humans, tick infection rate, and the probability of human infection from a tick bite. There has been considerable research on these components, and predictive models exist for some of them (described below), but there are currently too many unknowns to allow modeling of the entire process. 
	Several studies have examined the influence of fire (both prescribed burns and wildfire) on tick activity and populations. So far, this research is constrained to specific geographic areas (California, Illinois, Georgia, and Florida) (Gilliam et al. 2018; Gleim et al. 2014; MacDonald et al. 2018). Research has also focused on the risk of tick bites and disease. A 2018 study combined a tick activity model with 50,000 geolocated tick bite reports to map human exposure to ticks in the Netherlands. A follow-up 
	Several studies have examined the influence of fire (both prescribed burns and wildfire) on tick activity and populations. So far, this research is constrained to specific geographic areas (California, Illinois, Georgia, and Florida) (Gilliam et al. 2018; Gleim et al. 2014; MacDonald et al. 2018). Research has also focused on the risk of tick bites and disease. A 2018 study combined a tick activity model with 50,000 geolocated tick bite reports to map human exposure to ticks in the Netherlands. A follow-up 
	tick bite based on tick engorgement, attachment duration, and detection of bacterial DNA in ticks (Hofhuis et al. 2017). 
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	Prescribed burn à Escaped fire risk à Catastrophic fire risk 
	Wildlife populations and biodiversity à Recreational activities 
	While the relationships between wildlife populations and the recreational activities that depend on certain wildlife species (such as fishing, hunting, and wildlife watching) seem intuitive, related research is relatively rare. A few studies have found correlations between increased fish density and recreational fishing activity (Post et al. 2008) and number of rare bird species and birdwatching activity (Booth et al. 2011), but no models to predict recreational activity from wildlife populations were found
	Prescribed burn à Soil hydrophobia Runoff 
	à

	The effects of prescribed burns on soil hydrophobia and runoff can be approximated by adjusting the Revised Universal Soil Loss Equation (USDA 2017), estimates soil loss as a factor of rainfall-runoff, soil erodibility, slope length, slope steepness, cover-management, and supporting practices. The model was developed by the USDA to predict long-term, average-annual erosion by water for a broad range of farming, conservation, mining, construction, and forestry uses. It is embedded in a variety of models (e.g
	26 
	Plant species composition and tree size distribution à Pine straw biomass à Non-timber forest products yield 
	The USDA estimates that pine stands typically yield 100-150 bales/acre (2 tons/acre) of pine straw annually, depending on conditions (USDA 2011). The amount can vary from 60 bales/acre to as much as 200 bales/acre. Tree age, species, stand density, soil fertility, management inputs, and season can affect straw yields, but quantitative information on each of these factors’ effect on yields is not available. 
	Harvest and thinning à Soil compaction 
	The heavy equipment used during forest harvest and thinning operations is known to cause soil compaction, and these effects have been measured at many forest sites (Page-Dumroese et al. 2010, Shetron et al. 1988, Williamson and Neilsen 2000). However, no predictive models that specifically address the soil compaction effects of harvest and thinning were found. There are predictive models of soil compaction developed for the agricultural context; one of these, SoilFlex, was tested in forests in northeastern 
	Runoff à Water quality (bacteria) 
	There are a variety of quantitative models that can predict pathogens in watersheds, including the SWAT microbial sub-model, but most are aimed at agricultural land uses (Niazi et al. 2015). The SWAT sub-model was also developed for agricultural systems and has not been extensively tested in other types of land use (Sadeghi and Arnole 2002). One study did apply the model in areas of varying land-use type (including forest and residential), and found that it did not perform well until it was modified to bett
	Chemical treatment, runoff, and baseflow à Water quality (chemical) 

	Relationships without Quantitative Information in the Literature 
	Relationships without Quantitative Information in the Literature 
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	Biodiversity à Cultural and spiritual importance 
	Water quality à Water-related illness or death 
	Modeling waterborne bacterial infection is challenging for a number of reasons described by the CDC on their Current Waterborne Disease Burden Data and Gaps website (2017). In short, cases of disease cannot not be reliably ascribed to their means of contraction. Many waterborne disease can also be contracted through other means. Disease that are solely or primarily transmitted through water can be contracted by drinking water, environmental water (sprinkler systems, cleaning water, etc.), or recreational wa
	Catastrophic fire risk à Fire-related illness and death 
	Prescribed burn à Mushroom population à Non-timber yield 
	Morel mushrooms are valued for harvest, and evidence suggests that some species fruit prolifically after a fire, leading to increased harvest. While many studies have found high morel density following fires, a 2016 field study in Yosemite National Park suggested that many of these are overestimates due to biased, unsystematic sampling (Larson et al. 2016). The Larson et al. study developed a conceptual model of post-fire morel productivity that includes fire, soil, and plant community characteristics as we
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