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A B S T R A C T

Fuel poverty, the inability of households to afford adequate energy services, such as heating, is a major energy justice

concern. Increasing residential energy efficiency is a strategic fuel poverty intervention. However, the absence of easily

accessible household energy data impedes effective targeting of energy efficiency programs. This paper uses publically

available data, bottom-up modeling and small-area estimation techniques to predict the mean census block group resi-

dential heating energy use intensity (EUI), an energy efficiency proxy, in Kansas City, Missouri. Results mapped using

geographic information systems (GIS) and statistical analysis, show disparities in the relationship between heating EUI

and spatial, racial/ethnic, and socioeconomic block group characteristics. Block groups with lower median incomes, a

greater percentage of households below poverty, a greater percentage of racial/ethnic minority headed-households, and a

larger percentage of adults with less than a high school education were, on average, less energy efficient (higher EUIs).

Results also imply that racial segregation, which continues to influence urban housing choices, exposes Black and His-

panic households to increased fuel poverty vulnerability. Lastly, the spatial concentration and demographics of vulnera-

ble block groups suggest proactive, area- and community-based targeting of energy efficiency assistance programs may

be more effective than existing self-referral approaches.
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1. Introduction

Climate change concerns highlight a number of serious social and

environmental inequalities that can be traced to energy consumption.

These concerns form the foundation of a growing field of scholarship,

and activism, on energy justice. For instance, Hernández (2015) is-

sued “A Call for Energy Justice,” which acknowledged four basic hu-

man rights to energy: the right to a healthy, sustainable energy pro-

duction; the right to best available energy infrastructure; the right to

affordable energy; and the right to uninterrupted energy service. For

the many US households suffering in fuel poverty, nearly 14 million

with unpaid utility bills and 2.2 million with disconnected utilities,

these rights are unfulfilled promises (Seibens, 2013). Fuel poverty

(also known as energy poverty or energy insecurity) is the inability of

households to afford energy services for adequate heating and cool-

ing resulting in uncomfortable indoor temperatures, material depriva-

tion, and accumulated utility debt (Li et al., 2014, Hernández 2013,

Buzar, 2007; Boardman, 2012). More than a matter of mere comfort,

indoor temperatures that are too cold in winter or too hot in summer

have detrimental mental and physical health impacts, including death,

for vulnerable populations like children, the elderly, and minorities

(Anderson et al., 2012; Liddell and Morris, 2010, Howden-Chapman

et al., 2009, Howden-Chapman et al., 2007, Klinenberg, 2002; Taylor

et al., 2001). A key measurement of fuel poverty is the proportion

of gross income spent on home energy costs, or the energy burden.

Low-income US households have an average heating energy burden
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of 4.7% that is more than double the 2.3% national average and more

than four times the 1.1% average burden for high-income households

(US Department of Health and Human Services [HHS] 2011). Ana-

lysts consider a heating energy burden greater than 2% unaffordable

(Fisher et al., 2014).

However, fuel poverty is more than a straightforward relationship

between household income and energy costs. The concept became

prominent in the 1980s and has been well-studied in the UK (see spe-

cial issue Volume 49 of this journal) and even codified in law with the

passage of the Warm Homes and Energy Conservation Act of 2000.

Investigations of fuel poverty, including those beyond the UK, demon-

strate that a pure financial assessment of its prevalence does not ac-

count for the variety of factors and relationships that produce and sus-

tain it. Buzar (2007) advocated a “relational approach” to studying

fuel poverty, one that combines understanding energy policy, housing

infrastructures, and the lived experience of the fuel poor. Hernandez

and Bird (2010) found the incidence of high inner-city energy burdens

was due in part to a lack of energy assistance funding, a lack of hous-

ing and energy policy coordination, and a lack of understanding the

social and economic benefits of energy conservation and efficiency.

Harrison and Popke (2011) suggested fuel poverty be understood “as

a geographical assemblage of networked materialities and socioeco-

nomic relations” determined by household socioeconomic characteris-

tics, material conditions of the home, and the structure that defines the

provision of energy.

The conceptualization of fuel poverty as an energy justice concern

speaks to the energy-related distribution, procedure, and recognition

of “what constitutes the basic rights and entitlements of sufficient and

http://dx.doi.org/10.1016/j.enpol.2016.07.048

0301-4215/© 2016 Published by Elsevier Ltd.



UN
CO

RR
EC
TE
D
PR
OO

F

2 Energy Policy xxx (2016) xxx-xxx

healthy everyday life” (Walker and Day, 2012). Consequently, fuel

poverty violates the basic principle of distributive justice. Distributive

justice is the idea that all members of society have the right to equal

treatment, and that outcomes should be fairly distributed, and provides

moral guidance for the political processes and structures that affect the

distribution of economic benefits and burden across and within soci-

ety (Rawls, 1971; Sen, 1999 Schlosberg, 2013). As a distributive in-

justice, fuel poverty results from three interconnected inequalities: in-

come inequality, inequality in energy prices, and inequalities in hous-

ing and energy efficiency (Walker and Day, 2012). Although funda-

mentally, fuel poverty is a problem of distributional injustice, its pro-

duction and persistence are also the result of an injustice in recog-

nition of the specific energy-related needs of vulnerable populations,

and procedural injustice related to access to information, meaning-

ful participation in decision-making, and access to legal processes for

achieving redress or challenging decision-making processes (Walker

and Day, 2012).

Addressing the distributive injustice of fuel poverty requires first

determining what should be fairly distributed. Since inequalities in

income and energy prices require larger social and economic solu-

tions, residential energy efficiency retrofits have become a key fuel

poverty intervention strategy (Howden-Chapman et al., 2007,

Howden-Chapman et al., 2009, Bird and Hernández 2012, Gibson et

al., 2011, Harrison and Popke, 2011). However, the absence of easily

accessible data on individual household energy consumption and ef-

ficiency, and an incomplete understanding of the spatial distribution

of vulnerability presents an impediment to effectively targeting those

most in need (Walker et al., 2013; Sefton, 2002, ). Recently, scholars

have conducted small-scale, area-based studies using readily available

public data and geographic information systems (GIS) to offer visu-

alizations of spatial disparities in the distribution of fuel poverty vul-

nerability and energy consumption to facilitate policymaking and in-

tervention targeting (Pereira and de Assis, 2013; Walker et al., 2013;

Fahmy et al., 2011; Morrison and Shortt, 2008; ).

In the US, while fuel poverty is neither recognized colloquially

or politically, a few studies have modeled the spatial distribution of

residential energy consumption, including socioeconomic and demo-

graphic control variables in their models (Howard et al., 2012; Min

et al., 2010; Heiple and Sailor, 2008). Others have explored the so-

cioeconomic and demographic relationships of national residential en-

ergy consumption patterns (Health and Human Services [HHS] 2011;

Steemers and Yun, 2009; Ewing and Rong, 2008; Adua and Sharp,

2011; Newman and Day, 1975). Generally, these studies concluded

that, all else being equal, low-income households consume less en-

ergy. This broad assessment of consumption rather than efficiency,

tends to mask fuel poverty vulnerability. Instead, when analyzing en-

ergy use intensity (EUI), or energy consumption normalized by build-

ing square area, as a proxy for energy efficiency, national data from

the US Energy Information Administration (EIA) show that low-in-

come household, on average, are less efficient, with an EUI 27%

greater than high-income households. The spatial distribution of en-

ergy efficiency is further complicated by a persistent system of racial

and income residential segregation that defines housing development

and consumption patterns in many US metropolitan areas. A substan-

tial amount of research is aimed at understanding the causes and con-

sequences of residential segregation, primarily from the fields of soci-

ology and public health (Sampson, 2012; Sharkey, 2011; Anthopolos

et al., 2011; Sampson and Wilson, 1995; Wilson, 1987). But very lit-

tle of this research is connected to energy-related research in meaning-

ful ways that illustrates the critical importance of place to the presence

of energy efficiency disparities and fuel poverty vulnerability.

This paper uses publically available data to model residential heat-

ing energy efficiency, as a function of various housing and household

characteristics for a tri-county metropolitan area. The study extends

previous energy consumption and social justice oriented research by

predicting small-area estimation of end use energy efficiency, and

then examining racial/ethnic and socioeconomic relationships. This

analysis not only furthers our understanding of the dynamics and dis-

tribution of energy efficiency disparities, it has practical applications

that may assist policymakers and practitioners with developing and

implementing more equitable, efficient, and effective targeting of en-

ergy assistance programs and weather-related vulnerability prevention

activities. This study seeks to answer two research questions. First,

does residential heating energy efficiency vary within a metropolitan

area? And if so, what are the spatial characteristics of that variation?

Second, what are the patterns of association between residential heat-

ing energy efficiency and racial/ethnic, and socioeconomic character-

istics? The remainder of the paper summarizes the modeling and map-

ping of residential heating energy efficiency and analysis of the spa-

tial, racial/ethnic, and socioeconomic patterns. Section 2 describes the

study area, and methods for developing a model for heating energy ef-

ficiency and small-area predictions. Section 3 presents the results of

the geographic and statistical analyses. Section 4 concludes with pol-

icy implications.

2. Methodology

2.1. Description of study area

Kansas City is the largest city in the State of Missouri and lies

mostly in Jackson, Clay, and Platte counties (see Fig. 1). This

tri-county region also represents the service area for United Services,

one of nation's roughly 1000 Community Action Agencies (CAAs).

CAAs are mostly nonprofit, anti-poverty social service organizations

covering nearly 96% of US counties. CAAs are responsible for admin-

istering federal low-income energy assistance programs, such as, the

Department of Health and Human Services Low-income Home En-

ergy Assistance Program which provides utility bill assistance and the

Department of Energy Weatherization Assistance Program which pro-

vides no-cost energy efficiency retrofits. According to Building Amer-

ica, which determines building practices based on climate zones to

achieve the most energy savings in a home, the counties are located

in Climate Zone 4, which has a range of 4000–5499 heating degree

days (HDDs) annually, and where the average monthly outdoor tem-

perature drops below 47 °F (7 °C) during the winter (U.S. Department

of Energy, 2015).1 Hence, homes in the area exhibit relatively high

usage of heating equipment. In fact, space heating accounts for 41%

of total household energy consumption in Missouri. The main heating

fuel sources are natural gas (52%) and electricity (35%). Overall, the

average Missouri household total energy consumption is roughly100

million BTUs per year, approximately 12% more than the national av-

erage (EIA, 2013a).

According to the 2010 decennial census, the counties had a total

population of 985,419 in 398,124 households. The area covers urban,

1 Climate zones range from 1 (warmest) to 7 (coldest). Heating degree days

(HDDs), commonly used in calculations relating to the energy consumption

required to heat buildings, is a measurement of the difference in temperature

between the mean outdoor temperature, over a 24-h period, and a given base

temperature for if a building's indoor temperature fell below would require heating,

typically 65 °F (18 °C) in the US. For example, if the mean outdoor temperature

for a day is 35 °F, the HDDs measurement for that day is 65−35=30. Essentially,

areas with a larger number of HDDs have colder outdoor temperatures and require

more energy for heating.
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Fig. 1. Study site: Kansas City, Missouri (Jackson, Clay and Platte counties).

suburban, and rural landscapes. In addition to the urbanization gra-

dient, socioeconomic characteristics in the area vary greatly. Median

block group income ranged from $14,250 to $154,250. The household

racial composition included 77.1% White households, 17.3% Black

households, 5.2% Hispanic households, as identified by the head of

household. Kansas City is consistently identified as one of the na-

tion's twenty-five most racially segregated metropolitan areas due to

its high placement on a range of housing segregation indices, most

recently ranking 23rd based on black-white segregation (Logan and

Stults, 2011; Denton, 1994; Massey and Denton, 1993). Kansas City

also exhibits a high, and increasing, level of residential segregation

by income. According to Pew Research on Social and Demographic

Trends, Kansas City's Residential Income Segregation Index score in-

creased from 38 in 1980 to 47 in 2010 (Fry and Taylor, 2012).

2.2. Data

In the absence of detailed individual household energy data, the

EIA's Residential Energy Consumption Survey (RECS) provides

household-level energy consumption data for a representative sam-

ple of occupied, primary residences in the US. The RECS employs

a multi-stage area probability design to ensure the selection of a rep-

resentative sample of housing units, carefully controlled at specified

levels of precision, to allow analysis of housing using characteris-

tics and energy consumption and expenditures at the following ge-

ographic levels: national, census region, census division, groups of

states within a census division, and individual states (EIA, 2013b).

The RECS, first conducted in 1978, collects data on energy consump-

tion, expenditure and behavior along with a number of household de

mographics and housing unit characteristics. In the past, the RECS

sample size has not been particularly useful for analyzing energy pat-

terns at spatial scales lower than the census region, except for the most

populous US states; California, Texas, New York, and Florida. The

13th iteration of the survey, conducted in 2009 and released in 2013,

nearly tripled in sample size to 12,083 housing units (up from 4382

in 2005) representing the US Census Bureau's statistical estimate of

113.6 million occupied primary residences. Subsequently, the 2009

RECS allows for additional state-level analysis with the collection of

representative samples in 12 additional states, including Missouri. A

sample of 686 households were surveyed to represent the 2.35 million

occupied housing units in Missouri. For geographic domain estimation

purposes, base sampling weights were applied to each housing unit,

which was the reciprocal of the probability of selection into the sam-

ple and is the number of households in the population each observa-

tion represents (EIA, 2013b). Each sampling weight value was used as

a weighting factor in the weighted regression model.

Data for spatial modeling and mapping of the study area were

obtained from the U.S. Census Bureau 2006–2010 American Com-

munity Survey (ACS) 5-year estimates. The census block group was

used as the unit of analysis for this research. Census block groups

are a contiguous cluster of blocks within a census tract and gener-

ally consist of between 600–3000 people. The census block group

is the smallest spatial resolution for which household and housing

unit characteristics similar to RECS variables are publically available

from the U.S. Census Bureau. In addition, it is assumed that physi-

cal and social homogeneity are more likely at the smaller block group
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level than larger spatial levels, such as, census tracts or zip codes. A

GIS data layer of census block groups for the study area was created

by clipping data from the U.S. Census Bureau TIGER/Line Shape-

files with demographic and economic data from the 2006–2010 ACS

5-year estimates. Block groups were retained for analysis only if data

values for both population and number of occupied housing units

were greater than zero. Subsequently, 757 of 763 block groups in the

three-county study area were included in this analysis.

The RECS microdata set can be used to develop a bottom up sta-

tistical model. Bottom up statistical models use input data at a gran-

ular level, such as a sample of individual households, for extrapola-

tion to a geographic area of interest. These statistical models have

been used to establish relationships between various characteristics of

household energy consumption (i.e. specific end use consumption, to-

tal consumption, energy use intensity) while controlling for exogenous

variables such as housing unit characteristics, household characteris-

tics, urban form and climatic conditions (Min et al., 2010; Ewing and

Rong, 2008; Tso and Yau, 2007). Min et al. (2010) developed a statis-

tical framework for modeling residential space heating (and other end

use) consumption at a zip code- level resolution using the 2005 RECS

microdata. Their results were validated against residential energy sales

data. This study extends their framework to estimate residential heat-

ing efficiency by creating a state-level regression model using the

Missouri sample of housing units in the 2009 RECS microdata set

and exploring small-area spatial, racial/ethnic, and socioeconomic pat-

terns. Since many of the variables identified in the RECS can also be

found in the Census ACS, relationships derived from the statistical

model, known as direct estimators, can be applied to the block group

level dataset as indirect estimators for constructing small-area esti-

mates, under the assumption that the small areas have the same char-

acteristics as the large areas (Rao and Molina, 2015). The next two

sections detail this process.

2.3. Specifying a robust regression model for heating energy
efficiency

The ordinary least square (OLS) method was used to analyze how

housing unit and household characteristics influence residential heat-

ing energy efficiency. Heating energy efficiency is operationalized as

annual heating energy use intensity (EUI). Generally, a lower EUI

signifies relatively efficient performance. The EUI is defined as the

quantity of energy used in producing a given level of service, ex-

pressed as energy consumed per unit of output. The heating EUI

(kBtu/m2) was calculated for each RECS observation by dividing the

total annual heating consumption (kBtu) by the housing unit square

area (m2). Trained interviewers use a standardized method for mea-

suring and collecting the dimensions of the housing unit. Total an-

nual heating consumption is the aggregation of a household's space

heating consumption from all fuel types (i.e. natural gas, electricity,

liquefied petroleum gas (LPG), fuel oil, and/or kerosene). The RECS

captures consumption data from actual utility bills. Of the Missouri

RECS sample, 676 observations had total annual heating consump-

tion greater than zero kBtu. Another observation was dropped as it

was the only housing unit in the sample reporting fuel oil/kerosene as

the primary heating source. Fuel oil/kerosene are not major sources

of heat in the tri-county area; only 0.09% of homes use fuel oil/

kerosene as their primary heating source (US Census 2016). Upon

testing for outliers, an additional observation was dropped that exhib

ited an extremely high EUI for a relatively small footprint. The final

data set consisted of a sample of 674 Missouri housing units.2

The OLS model can be formulated as,

where E is the annual heating EUI, and is the predictor vari-

able from the RECS dataset (Min et al., 2010). The dependent vari-

able was natural logged to better fit the nonlinear relationship between

heating EUI and the independent variables (Min et al., 2010; Ewing

and Rong, 2008).

Since many of the predictors of heating EUI are themselves corre-

lated, it is important to consider their simultaneous effects using mul-

tivariate analysis techniques. This approach therefore requires deter-

mining the best subset of predictors of heating EUI. Initial selection

of independent variables was guided by previous studies using OLS

to understand residential energy consumption. The two major themes

on factors that contribute to residential energy consumption are cat-

egorized as the physical-technical-economic model (PTEM) and the

lifestyle and social-behavior tradition (LSB) (Adua and Sharp, 2011).

Many models include variables from the PTEM perspective which ex-

plains energy consumption as a result of housing unit characteristics,

or the building's physical structure and equipment characteristics, and

economic and environmental factors. These variables include: type of

home, year home built, home size, household income, price of energy,

geographic location, and climate variables (Ewing and Rong, 2008;

Min et al., 2010; Adua and Sharp, 2011, Valenzuela et al., 2014). The

LSB tradition draws on the importance of human occupants to energy

consumption, or household characteristics. LSB-related variables of-

ten include: race/ethnicity, household size, age of householder, and

sex of householder (Ewing and Rong, 2008; Min et al., 2010; Adua

and Sharp, 2011, Valenzuela et al., 2014). For this model, variables

representing housing unit characteristic included three dummy-coded

variables for housing type (mobile home, single family detached, and

single family attached, with multifamily as the reference category), six

dummy-coded variables for decade constructed (1950s through 2000s,

with homes built before 1950 as the reference category), and three

dummy-coded variables for primary heating fuel (liquid petroleum gas

(LPG), electricity, and wood, with natural gas as the reference cate-

gory). Household characteristic variables included one interval vari-

ables for number of rooms, one categorical variable for household in-

come (divided into eight categories), and one dummy-coded variable

for home ownership coded as “1″, otherwise “0″. Final model selec-

tion of independent variables was based upon backward stepwise se-

lection.

2.4. Utilizing census data for small area heating EUI estimation

Since the goal of this study is to explore heating energy efficiency

at a geographical domain smaller than the RECS microdata (collected

with adequate precision at the state-level), the second step involves

using the model above to estimate and map heating EUI for Kansas

City. This technique, known as small-area estimation, combines indi-

vidual level data (i.e. household surveys) and spatial characteristic es-

timates (i.e. Census data). There have been significant theoretical ad

2 A sample size of 674 can predict with accuracy at a 95% confidence interval and

±4 confidence level, for 2,339,684 housing units (population size). Based on the

assigned sampling weights, the final sample represents 2,286,868 housing units.
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vances in small-area estimation methodologies for modeling and map-

ping (Fay and Herriot, 1979; Fahmy et al., 2011; Rao and Molina,

2015). To accomplish this, resultant weights derived from the regres-

sion model are applied to spatial data (e.g., housing units by type,

housing units built in each decade, housing units using each fuel

type for heating, median household income), from the US Census

2006–2010 ACS 5-year estimates. The derived regression weights

are therefore intended to reflect the observed pattern of influence

at the household level, which is essential to the small area estima-

tion. Regression coefficients are applied to block group level data,

, for each of the 757 block groups in the study area (Min et

al., 2010), using ARCMap (v.10.3.1) software (ESRI, Inc) to predict

block group level heating EUI estimates :

Since this modeling approach involves matching two different

datasets (RECS and ACS), these sources must first be harmonized

with respect to their measurement and weighting. Each census vari-

able was weighted by the percentage (or ratio) of its presence in the

Census block group. For example, if the number of housing units

heated by electricity in census block group 1 is 100 and the block

group has 200 housing units, the variable is standardized as 100/

200=0.5, which is comparable to the binary variable for whether or

not an observation in the RECS data set uses electricity as its primary

heating source. The ratio for each block group is then multiplied by

the coefficient for electricity from the regression model.

Lastly, to simply exponentiate the log-linear model, , will sys-

tematically underestimate the expected value of EUI, thus the scaling

value is needed (Wooldridge, 2009: 211). RMSE is

the root mean square error of the model. From the estimated log val-

ues , the actual estimated EUI is obtained by the equation

2.5. Statistical analysis

The relationships between the predicted mean block group heat-

ing EUI and measures of race/ethnicity, and socioeconomic status

are examined using bivariate and multivariate analyses. First, corre-

lation analysis was conducted between heating EUI and each demo-

graphic and social variables. Next multivariate regression was used

to explore the relationship between predicted heating EUI and block

group racial/ethnic and socioeconomic characteristics. Lastly, logistic

regression was used to model how the proportion of racial/ethnic mi-

nority headed households, and other block group demographic charac-

teristics affect the probability of block group vulnerability, thus prime

for energy efficiency intervention targeting.

3. Results

The final regression model for estimating annual heating EUI,

expressed as natural log, is presented in Table 1. The final model

consisted of 11 statistically significant variables representing housing

unit type, decade housing unit was constructed, primary heating fuel,

and control variables for household income, home ownership, and

Table 1
OLS regression model for small-scale heating EUI estimation.

DV = ln (EUIheat) Coeff. Robust Std. Err.

Type of Housing
Multi-Family Reference

Mobile Home 0.68*** 0.09

Single Family Dettached –
Single Family Attached –

Decade Constructed
Before 1950 Reference

1950s –
1960s -0.24*** 0.07

1970s -0.18** 0.07

1980s -0.34*** 0.08

1990s -0.26*** 0.07

2000s -0.29*** 0.07

Primary Heat
Natural Gas Reference

Electricity -1.10*** 0.05

Wood -2.07*** 0.23

Liquid Petroleum Gas –
Control Variables
Household Income -0.03* 0.01

Home ownership -0.15** 0.05

No. of rooms -0.09*** 0.01

Model Statistics
Intercept 6.57*** 0.08

N 674

F (11, 662) 85.9***

Adjusted R2 0.62

RMSE 0.523

-dropped from stepwise regression

* Significance p <0.05.
** Significance p <0.01.
*** Significance p <0.001.

housing unit size. The model explained a considerable proportion of

variability in heating EUI (R2=0.62, F(11, 662)=85.9, p<0.001). Based

on the F value of the model, the final sample size of 674 is large

enough to make the model significant. Cross-sectional studies are at

greater risk of exhibiting heteroskedasticity. Weighted regression is

one method to correct residuals and the model's residual versus fit plot

exhibits a constant variance and shows no evidence of heteroskdas-

ticity. Additionally, robust standard errors were used and are report

in Table 1 (Wooldridge, 2009). Multicollinearity can also be a major

problem for statistical models of residential energy use, and can re-

sult in poor predictions of certain end uses (Swan and Ugursal, 2009).

Multicollinearity commonly arises with variables that tend to be corre-

lated, such as household income and housing unit size. However, cor-

relations between any two variables in the final model did not exceed

0.45, and the variance inflation factor is 1.32. Thus, the model did not

indicate a noticeable presence of multicollinearity.

Fig. 2 illustrates the spatial distribution, in quintiles, of the pre-

dicted mean annual heating EUI for each block group, darker shading

represents higher predicted heating EUI. The six uninhabited block

groups were left uncolored. It is important to note that predicted val-

ues reflect the mean heating EUI of all housing units in the block

group rather than any specific house (Min et al., 2010). Among the

757 block groups there was significant difference in values of heat-

ing EUI, ranging from 88 to 481 kBtus/m2. The metropolitan mean

heating EUI, 269.6 kBtu/m2 (SD=66.7 k/Btus/m2), was higher than

the state mean heating EUI, 218.9 kBtus/m2. The heating EUI varia-

tion, nearly 400 kBtus/m2, is quite large. This means that within the

same metropolitan region, homes in some areas were far less efficient

than others. While block groups with higher heating EUIs are scattered

throughout the three counties, the majority of block groups with the
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Fig. 2. Predicted block group mean annual heating EUI (kBtus/m2).

highest EUIs were concentrated within the Kansas City limits and its

urban core. Of the 151 block groups with the highest (fifth quintile)

predicted heating EUI, 119 (78.8%) were located within the city lim-

its.

Pearson correlations, shown in Table 2, revealed statistically sig-

nificant relationships between socioeconomics, race/ethnicity and pre-

dicted heating EUI (p<0.001). Heating EUI is positively corre

Table 2
Pearson's correlation between race/ethnicity, socioeconomics and predicted heating en-

ergy use intensity (EUI).

Category Description

Pearson's

correlation

Economic

status

Median household income -0.62

Percent households below poverty level 0.47

Education Percent population with less than high school

diploma

0.51

Age Percent households with householder aged

65+

0.12

Race/Ethnicity Percent white householders -0.37

Percent black householders 0.32

Percent Hispanic householders 0.31

Tenure Percent renters 0.40

All coefficients significant at p<0.001

lated with block groups with a higher number of adults without a

diploma (0.51), higher number of households in poverty (0.47), more

renters (0.40), more Black householders (0.32), more Hispanic house-

holders (0.31), and more senior householders (0.12). Furthermore,

heating EUI was negatively correlated with median household income

(−0.62) and proportion of White householders (−0.37). Thus, census

block groups with lower socioeconomics, lower median household in-

comes, and higher proportions of Black or Hispanic households are

more likely to have higher heating EUIs. Additionally, Kruskal-Wallis

tests were conducted to determine if heating EUI was different among

block groups divided into quintiles by the socioeconomic and race/

ethnicity variables of interest. Individual Kruskal-Wallis tests showed

there were statistically significant differences in heating EUI between

the quintiles of median household income (χ2=330.9), percent poverty

(χ2=171.1), percent less high school education (χ2=195.2), percent se-

nior headed households (χ2=20.2), percent renters (χ2=168.2), percent

White householders (χ2=78.1), percent Black householders(χ2=97.2),

and percent Hispanic householders (χ2=94.7), (DF=4, p<0.001).

Regression models examining how race/ethnicity are related to

heating EUI are shown in Table 3. Model 1 in Table 3 shows this re-

lationship when socioeconomic characteristics of the block group are

not taken into account. This model reveals a strong relationship be-

tween race/ethnicity and heating EUI. The model shows that as the

percentage of Black households and Hispanic households in a block
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Table 3
Relationship between estimated heating EUI and block group race/ethnicity, segregration and socioeconomic characteristics.

Model 1 Model 2 Model 3 Model 4

b S.E. b S.E. b S.E. b S.E.

Percent black householders 0.75*** 0.07 0.19* 0.09

Percent Hispanic householders 2.58*** 0.29 0.71* 0.32

Percent households below poverty level 1.24*** 0.20

Percent population with less than high school diploma 1.47*** 0.28

Percent households with householder aged 65+ 0.75*** 0.17

Black residential segregation 90.93*** 7.19 37.09*** 9.19

Hispanic residential segregation 238.68*** 22.03 94.27** 29.92

Proportion households below poverty level 98.37*** 22.87

Proportion population with less than high school diploma 146.14*** 29.97

Proportion households with householder aged 65+ 64.32*** 16.89

Intercept 240.13*** 3.29 210.56*** 4.75 232.34*** 3.39 210.09*** 4.82

N 757 757 757 757

R2 0.21 0.33 0.23 0.33

* Significance p<0.05.
** Significance p<0.01.
*** Significance p<0.001.

group increase, heating EUI increases by 0.75 and 2.58 kBtu/m2, re-

spectively.

The second model in Table 3 (Model 2) shows how race/ethnic-

ity are related to heating EUI when the effects of socioeconomic char-

acteristics of the block group (percent poverty, percent less than high

school diploma and percent senior householders) are held constant.

In this model, while the positive relationship between race/ethnicity

and heating EUI remain, as in Model 1, the effects are moderated

by the socioeconomic characteristics of the block group with percent

of households below poverty, percent of population with less than a

high school diploma, and percent senior headed households having

a larger effect on heating EUI, 1.24 (t=6.3), 1.47 (t=5.4), and 0.75

(t=4.5) kBtu/m2, respectively. After controlling for socioeconomics,

the effect of a percent increase in Black or Hispanic households in-

creasing a block group's heating EUI drops to 0.19 (t=2.2) and

0.71 (t=2.2) kBtu/m2, respectively.

The final two models reported in Table 3 (Models 3 and 4) ex-

change the percentage of Black and Hispanic households in the block

group with a measure of the block group's level of Black and Hispanic

racial residential segregation (RRS). The RRS, a measure of the ge-

ographic isolation of race/ethnicity from other racial groups (Massey

and Denton, 1993, Reardon and O’Sullivan, 2004, Anthopolos et al.,

2011). RRS has received increased attention as a major social de-

terminant in poor outcomes (i.e. health effects) and may be a proxy

for concentrated neighborhood disadvantage, including exposure to

socio-physical environmental stressors in the built environment

(Anthopolos et al., 2011). Model 3 shows that RRS has a strong pos-

itive relationship with heating EUI. Each unit increase in Black iso-

lation increases heating EUI by roughly 91 kBtu/m2. Hispanic isola-

tion has an even greater effect on heating EUI. Every unit increase

in Hispanic isolation increases heating EUI 239 kBtu/m2. In Model 4

the relationship between segregation and heating EUI remains strong

even after controlling for the socioeconomic characteristics of the

block group. Given that the isolation index is a value between 0

and 1, the socioeconomic block group characteristics in Model 4

are in proportions rather than percentages. The Black and Hispanic

isolation indexes maintain a strong positive relationship with heat-

ing EUI but are slightly moderated by block group socioeconomic

characteristics. Once socioeconomic characteristics- poverty (t=4.3),

less high school (t=4.9), senior households (t=3.8)- are taken into

account, the effect that a unit increase in Black and Hispanic iso

lation increases heating EUI drops to 37 (t=4.0) and 94 (t=3.2) kBtu/

m2, respectively.

Fig. 3 illustrates the spatial distribution of high-risk block groups,

which would be prime candidates for energy efficiency interventions.

High-risk block groups are defined as those where predicted heating

EUI was greater than study area mean (269.6 kBtu/m2), median year

home built was less than the study area mean (1966.5), and median

household income was less than the study area mean ($51411.50).

There were 263 block groups meeting these criteria (34.7% of block

groups). More than a quarter of the area's population (26.6%) resided

in high-risk block groups. The racial composition included 49.7% of

the Black population, 46.9% of the Hispanic population, and 18.7%

of the White population. Black and Hispanic households within the

high-risk block groups are highly overrepresented compared to their

representation within the entire study area (29.6% Black, and 8.6%

Hispanic), while White households are underrepresented (62.4%). If

there were no disparities in heating EUI this would not be the case.

To understand the odds that the racial/ethnic and socioeconomic

characteristics of a block group contribute to that block group's like-

lihood of being high-risk, logistic regression results are presented in

Table 4. Table 4 suggests that a 10% difference in percent households

in poverty increased the odds by 2.7% (p<0.01) that the block group is

high-risk. Racial/ethnic characteristics (percentages of Black and His-

panic households) are significant predictors of high-risk block groups

(p<0.001). For instance, a 10% increase in Hispanic households in-

creased the high-risk odds by a factor of 10.8. Logistic regression re-

sults showed that high-risk block groups are poorer, have less educa-

tional attainment, have more households headed by seniors, and have

greater percentages of Black and Hispanic households.

4. Conclusion and policy implications

This study estimated the mean heating EUI for 757 census block

groups in the Kansas City, Missouri (Jackson, Clay, and Platte coun-

ties). The findings demonstrate that disparities exist in the relation-

ships between the spatial, racial/ethnic, and socioeconomic charac-

teristics of census block groups and the estimated mean block group

heating EUI (kBtu/m2), a proxy for energy efficiency where a higher

EUI signals relatively less efficiency when compared to similar sized

homes. Predictions reveal that block groups with lower median in-

comes, a greater percentage of households below poverty, a greater
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Fig. 3. High-risk block groups. High-risk block groups are defined as those where heating EUI, median age of home, and median household income were worse than the study area

average. There are 263 high-risk block groups identified.

Table 4
Logistic regression – high-risk block groups.

Odds ratio S.E.

Percent black householders 1.014*** 0.004

Percent Hispanic householders 1.079*** 0.023

Percent households below poverty level 1.027** 0.010

Percent population with less than high school diploma 1.050*** 0.013

Percent households with householder aged 65+ 1.021** 0.008

Intercept 0.060***

Pseudo R2 0.24

N 757

*Significance p<0.05

** Significance p<0.01.
*** Significance p<0.001.

percentage of racial/ethnic minority headed households, and a larger

percentage of the population with less than a high school education

experienced higher mean heating EUIs. Essentially, homes in block

groups exhibiting these demographic and socioeconomic characteris-

tics are more likely to be less energy efficient when compared to other

block groups in the region.

This analysis also reveals an association between the enduring ef-

fects of residential racial and income segregation and the distribution

of residential energy disparities. The figures above illustrate that past

institutionalized residential segregation continues to influence urban

housing consumption and translates directly to energy-related dispar-

ities. Urban sociologists often associate residential segregation with

concentrated social and economic disadvantage (Sharkey, 2013;

Sampson, 2012; Klinenberg, 2002). The results of this study fol-

low decade-old reports by two major African American organizations

about the relationship between Blacks, energy and climate change.

Both the Congressional Black Congress Foundation and the American

Association of Blacks in Energy released reports in 2004 assessing the

disproportionate effects of energy inequities on Blacks. Since these re-

ports, there has been little research conducted on this issue and vir-

tually no policy advances. Recognizing that the uneven development

patterns and high levels of residential segregation evident in Kansas

City occur in other US urban areas, such as St. Louis and Detroit, this

study should be replicated to explore if similar energy disparity pat-

terns exist and determine the need for a national urban energy justice

policy.

Space heating remains the largest, single end use, accounting for

41% of residential energy consumption (EIA, 2013c). Modeling the

efficiency of residential space heating (and cooling) is important be-

cause of its responsiveness to weather. Prioritizing heating energy ef-

ficiency and targeting building envelope retrofits, before appliance

and lighting efficiency, may have greater potential as the lifespan of a

housing unit most likely outlasts the current occupant and appliances.



UN
CO

RR
EC
TE
D
PR
OO

F

Energy Policy xxx (2016) xxx-xxx 9

Additionally, in dominant discussions on climate change, global

warming specifically, winter weather and cold conditions receive far

less attention. Nevertheless, recent studies have found that the effects

of global warming (i.e. the loss of Arctic sea ice) can be linked to

extreme and prolonged cold weather patterns in mid-latitudes, such

as the cold spells experienced by northeastern and Midwestern states

during the polar vortex of winter 2014 (Peings and Magnusdottir,

2014, Tang, 2013, Francis and Vavrus, 2012). Subsequently, as cli-

mate change adaptation discourse becomes more prevalent, it is neces-

sary to understand the material experience of changing environmental

conditions, the effect on everyday life, and the potential ways in which

communities are threatened (Schlosberg, 2013).

Furthermore, energy related disparities increase the sensitivity of

low-income and other vulnerable households to extreme temperature

exposure resulting in detrimental health implications (Noe, Jin and

Wolkin, 2012; Centers for Disease Control [CDC], 2006; Taylor et

al., 2001). The Centers for Disease Control (CDC) found that be-

tween 2006 and 2010, 63% of weather-related deaths were attrib-

uted to extreme cold exposure, compared to 31% attributed to heat-re-

lated causes (Berko et al., 2014). Weather-related death rates varied

by age, race/ethnicity, sex, location, and income (Berko et al., 2014).

For vulnerable populations like the elderly, extremely cold tempera-

tures can be deadly, even indoors. Elderly patients admitted to the in-

tensive care unit for hypothermia are more severely affected and die

more frequently when found indoors compared to those found out-

side with equivalent body temperatures (Mégarbane et al., 2000). In

another study, almost half of hypothermia-related deaths occurred in-

doors, with death rates particularly high among Blacks aged 80 years

or older (Taylor et al., 2001). Despite these findings, there is a lack

of recognition of the magnitude of problems associated with danger-

ous indoor temperatures when homes are not adequately heated. In-

stead, public health agencies often issue broad cold-weather injury

risk reduction precautions primarily focused on outdoor protection,

like layering clothes and keeping emergency kits and blankets in the

car (CDC, 2006). Mapping heating energy efficiency can be combined

with hypothermia health data for additional analysis on the connection

between efficiency and winter-related injuries and death.

To the disadvantage of the millions of Americas who struggle to

access and maintain affordable heating energy services, the conse-

quence of not identifying distinct forms of social inequality in resi-

dential energy efficiency means more broad-based energy policies that

fail to serve those with the greatest need. For instance, the passage of

the 2009 economic stimulus bill created various residential energy ef-

ficiency programs across the country. Most programs, however, were

market-based interventions in the form of low-interest loans and tax

rebates which limited participation by low-income households who

often lack adequate credit worthiness to qualify for loans and rarely

earn enough annual income to file for tax rebates. Although $5 bil-

lon was committed to the Department of Energy's Weatherization As-

sistance Program, the rollout was slow and inconsistent (Grunwald,

2012). In part, the lack of comprehensive accounting of local en-

ergy consumption and efficiency disparities, forced weatherization

agencies to rely on prevailing practices of first-come, first-served

self-referral operating procedures (Fuller et al., 2010; Madrid and

James, 2012). A growing body of research demonstrates that the spa-

tial concentration of fuel poverty risk factors, justifies taking proac-

tive, targeted, area- or community-based approaches for implement-

ing energy assistance programs to overcome participation barriers,

including those that are social and cultural, and to more effi

ciently and effectively deliver services in vulnerable communities

(Reames, 2016; Walker et al., 2013; Hallinan et al., 2012).

Moreover, modeling energy use intensity rather than total energy

consumption provides more meaningful information for analyzing dis-

parities and targeting the most appropriate intervention to the ap-

propriate location. The residential sector has made energy efficiency

progress, continuing a three-decade decline in average consumption

per home even as the number and average size of housing units in-

crease. This trend is primarily a result of efficiency improvements for

newer homes. While aggregate residential sector statistics and analy-

ses are useful for policy and program development, they often mask

the heterogeneity of energy users, resulting in a lack of equity con-

siderations. The use of bottom-up statistical models and mapping, ex-

trapolated to smaller-scale spatial areas allows a more nuanced analy-

sis of energy consumption. While several energy-mapping projects are

in various stages of development and implementation across the na-

tion (e.g., Twin Cities Energy Mapping Tool in Minnesota), a barrier

to more of these projects remains the proprietary nature of individual

energy data, as utilities express concerns about customer privacy, or

have little incentive to participate in projects that have the potential re-

duce revenue. In the meantime, using readily available public data and

the methodological procedures presented in this study, offer an alter-

native for community energy mapping when local utility energy data

are unavailable.
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