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ABSTRACT

Using a simulation tool, we investigate the effects 
created by a US state defecting from the wholesale 
electricity market in PJM, an organized electric 
grid in the eastern United States, on the states that 
remain in the coalition. We find, generally, that if 
a net-importing state defects from the wholesale 
energy market, the remaining states’ producers 
are worse off and the remaining states’ consumers 
are better off. The opposite effect takes hold if the 
defecting state is a net-exporter. Furthermore, we 
find evidence that defection impacts the remaining 
states’ climate initiatives. The effectiveness of 
electric vehicle and solar photovoltaic policies are 
conditional on the number and characteristics of 
defecting states. Our simulations suggest that, for 
state legislatures pursuing these climate goals, the 
best strategy to adopt is to pass laws that are both 
geographically targeted and flexible.
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INTRODUCTION

Since the late 1990s, organized electricity markets in the United States have shown that a geographically 
broad and resource-diverse power grid can achieve significant efficiency improvements in electricity 
power generation. These markets’ success has motivated some new efforts to modify electricity structure 
and operations in several areas. For example, members of the Western Interconnection are considering 
the expansion of their current cooperative arrangement to include a day-ahead market, and in the 
southeast, talks between Southern Company and Duke Energy have opened regarding the formation of 
a Southeastern regional transmission organization (RTO). PJM, an RTO in the eastern United States, 
has grown from three utilities operating in the area between Philadelphia and Baltimore to the largest 
organized electricity grid in the Western Hemisphere.

Yet, with each additional member to the consortium, the diversity of objectives and incentives grows. The 
resultant conflict can add instability to the organization. Some parties may threaten to leave the coalition 
in response to changes in the incentive structure and underlying dynamics (both political and economic) 
of the member groups. It is precisely this instability that this paper seeks to explore as members consider 
leaving the wholesale energy market of an RTO in response to constraints imposed to limit their 
alternatives in implementing their environmental policies. Using an energy market simulation tool, we 
measure the impact on the various stakeholders that would remain if a state were to exit the wholesale 
electricity market in PJM. Our analysis identifies the effects of state defection to remaining suppliers and 
consumers and makes claims about the welfare created or destroyed by a state defection. We also explore 
the consequences of one state’s defection on the remaining states’ abilities to implement meaningful 
environmental policies in their electricity sectors.

The idea of a state defecting from an RTO like PJM or defecting from some portion of the markets 
administered by these organizations is not contrived. Recent threats from New Jersey and Maryland 
to withdraw from the capacity market in PJM have gained traction in the public discourse, appearing 
with some frequency in trade publications (Morehouse 2020; Walton 2020). The arguments for leaving 
the PJM capacity market focus on the disconnect between what the states—New Jersey and Maryland—
are pursuing to achieve net-zero carbon goals and the actions from federal agencies—namely the 
Federal Energy Regulatory Commission (FERC)—to regulate the PJM capacity market. However these 
specific disagreements are resolved, the possible discordance between state policy goals and federal 
market oversight in an RTO highlights the more general complicated interactions between the various 
stakeholders and is thus worthy of further exploration.

The countervailing ambitions seen among New Jersey, Maryland, PJM, and FERC are not unique in the 
landscape of the US electricity grid. Leaders in Connecticut have leveled broadsides at another RTO, 
ISO-New England (ISO-NE), intimating that Connecticut might leave ISO-NE entirely because of a “lack 
of leadership on carbon” (Skahill 2020; Spiegel 2021). Ironically, almost simultaneous to these discussions 
on the Eastern Seaboard regarding partial or full defections of different states from their respective 
RTOs, there are calls for Western states to create a true RTO out of existing interstate arrangements 
(Hansen and Howe 2020). Indeed, since the creation of RTOs as prescribed by FERC Order No. 2000,1 
conflicts have been prolific and almost genetic. In a remarkable legislative memo written in 2003, the 
author describes the plays and counterplays of American Electric Power (AEP), a transmission company

1 FERC Order No. 2000 was issued on December 20, 1999.
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headquartered in Ohio, as the company followed a FERC-imposed mandate that it place its assets under 
the control of an RTO:

“Instead of choosing either the forming Midwest ISO or the existing PJM Interconnection, 
AEP joined with other utilities and proposed to form the for-profit Alliance RTO,  

a plan FERC ultimately rejected. In 2002, FERC approved the former Alliance utilities’ 
commitments to join either MISO or PJM…. In 2003, FERC accepted revisions to the  

PJM tariff that would allow AEP… to join PJM. Subsequently, however, the Kentucky Public 
Service Commission and the Virginia legislature prevented transfer of  

AEP’s transmission facilities to PJM, while at the same time, state legislation in Ohio  
and Michigan required AEP join an RTO.” (Wiese 2003)

Over the course of a few years, AEP was required to join an RTO, blocked by the federal government 
from forming their own RTO, approved by the federal government to join PJM, blocked by the 
commissioners of Kentucky and the people of Virginia from joining PJM, and directed by the people 
of Ohio and Michigan to join an RTO. If ever there were a sentence that describes the complicated 
stakeholder interfaces embedded in an RTO, that was it.2

The growing interest by state leadership to leave some (or all) of an RTO’s markets is interesting in its 
own right. We extend this analysis by reckoning with the idea that a state may, as a matter of sovereignty, 
remove itself from a particular RTO market, but that choice has spillover effects on the welfare of the 
states that remain. In the entanglement of organized electricity markets, there are states that have made 
no indication of defecting from RTO markets. Will that sentiment change if another state decides to 
defect first? How stable is an electricity transmission coalition?

Our research is the first that attempts to understand RTO stability under a wholesale energy market 
defection, contributing to the literature that has analyzed the impact of a capacity market defection. The 
independent market monitor that oversees PJM, for instance, has found that the proffered threats by New 
Jersey and Maryland to leave the PJM capacity market would annually cost the states as much as $386.4 
million and $206.6 million, respectively (Monitoring Analytics 2020a, 2020b). Furthermore, Monitoring 
Analytics found that a New Jersey or Maryland defection would decrease capacity market prices that 
cleared in PJM post-defection. As such, our intuition of these machinations suggests that a New Jersey or 
Maryland defection from the PJM capacity market would make the producers in the states that remain 
in PJM worse off but make the consumers in the states that remain better off. This work will extend these 
lines of inquiry to PJM’s wholesale market.

We analyze not only the impacts on producers and consumers induced by a state-driven wholesale 
electricity market defection,3 but also the influence a defection of this type will have on the ability of 
remaining states to pursue effective net-zero carbon policies. Will states be more effective or less effective 
at pursuing their own environmental initiatives after another state defects from PJM’s wholesale energy 
market? Or broadly, how are climate goals entangled between states?

To fully investigate these questions, we first begin by simulating PJM’s wholesale electricity market 
as it was in 2019. This base case is compared to five different state-exit scenarios: New Jersey defects, 

2 AEP, along with Commonwealth Edison and Dayton Power & Light, ended up joining PJM in 2004 (PJM n.d.).
3 There is a slight nuance here. Institutionally, a utility is the prime agent that chooses to defect but that “choice” can be forced by the 
state. In modeling a state-driven defection, we mean only to analyze the result of that defection and not the political negotiations between 
an in-state utility and that state’s regulatory and political apparatus.
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Maryland defects, Virginia defects, Pennsylvania defects, and Illinois defects. We chose New Jersey and 
Maryland for the public comments indicating these states’ distaste for recent developments in PJM’s 
market rules. Our choice of Virginia arises because it is the largest importer of electricity in PJM and 
we wanted to explore the impact of defection by that extremum. Pennsylvania and Illinois, as the two 
largest exporters in PJM, were simulated as defectors as well. In comparing these defection scenarios 
to the base case, we can measure how one state’s absence can influence the outcomes in other states in 
the consortium. Our general findings are that when a net importing state defects, the remaining states’ 
producers are worse off and the remaining states’ consumers are better off. We find an opposite effect 
under a scenario where the defector is a net exporter.

In the next section we introduce our simulation tool and describe the data we use for this study. In 
Section 3 we present our results. Section 4 offers a discussion and suggestions to extend this research. 
Section 5 concludes.

METHODS AND DATA

We simulate PJM’s wholesale market as it was in 2019 with generator offers, merit order, ancillary 
services, make-whole payments, and congestion-related effects all playing a role in which generators  
get dispatched and what price clears in each hour of the year. To measure the impacts of a state defecting 
from the consortium, we also simulate the removal of a single state from the broader PJM organized 
market. In those defection scenarios, we simulate PJM without the supply or demand of the defecting 
state.

We use the Electricity Market Simulation Tool (EMST) to simulate the day-ahead market operation 
outcomes in PJM. EMST is a reconfigurable tool that can integrate various unit commitment and 
dispatch models in different ways to represent various designs in energy and ancillary service markets. 
The tool can calculate dispatch and financial outcomes for all individual market players including 
out-of-market uplift payments. EMST was first introduced by Daraeepour et al. (2019) to simulate the 
operation of day-ahead and real-time markets for a year-long period under different market designs that 
account for the characterization of uncertainty in the day-ahead markets. The tool initially explored 
load-following capability products, stochastic residual unit commitment, and stochastic market clearing. 
EMST was further extended by Daraeepour et al. (2020) to include alternative pricing mechanisms, 
including primal approximations of convex hull pricing.

EMST simulates the day-ahead market operations for each hour of each day and uses its commitment 
and dispatch outcomes to initialize simulations of the subsequent day; the algorithm’s framework is 
shown in Figure 1. Three models are used to simulate market operations. First, EMST runs the unit 
commitment model to determine the generating units’ optimal on/off status and scheduled electrical 
power output. This mixed-integer linear program takes generators’ supply bids4 along with demand and 
wind generation forecasts for the next 24 hours as inputs to find the schedules that minimize electricity 
generation costs. A second model is a linear program that performs economic dispatch, freezing the 
commitment variables to the optimal values found in the unit commitment and determining prices for 
energy and ancillary services. Prices are set equal to the shadow price of nodal balance constraints that 
enforce the equality of demand and supply for each period. After the market-clearing schedules and 
prices are determined, a third model calculates the out-of-market uplift payments that the PJM gives to 
generators to ensure they do not operate at a loss when following the dispatch instructions. 
 
 

4 We assume all generators offer supply bids at their marginal costs.
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Figure 1. Configuration of EMST for simulating PJM market operation outcomes

2.1 Models
What follows is a detailed formulation of the unit commitment, economic dispatch, and uplift payment 
models that are used in EMST to simulate the market operation outcomes.

2.1.1 Notation
2.1.1.1 Sets

ΦF Set of all fossil-fired generators, f ∈ ΦF running from 1 to NF

ΦN Set of all nuclear generators, n ∈ ΦN running from 1 to NN

ΦH Set of all hydro generators, h ∈ ΦH running from 1 to NH

ΦK Set of all storage units, k ∈ ΦK running from 1 to NK

ΦS Set of all solar generators, s ∈ ΦS running from 1 to NS

ΦW Set of all wind generators, w ∈ ΦS running from 1 to NS

ΦT Set of time periods, t ∈ ΦT running from 1 to NT

ΦZ Set of all zones z,  z ∈ ΦZ running from 1 to NZ

Λz
F Set of all fossil-fired generators in zone z, z ∈ ΦZ

Λz
N Set of all nuclear generators in zone z, z ∈ ΦZ

Λz
H Set of all hydro generators in zone z, z ∈ ΦZ

Λz
K Set of all storage units in zone z, z ∈ ΦZ

Λz
S Set of all solar generators in zone z, z ∈ ΦZ

Λz
W Set of all wind generators in zone z, z ∈ ΦZ

Λz
NZ Set of neighboring zones interconnected to zone z, z ∈ ΦZ

ISO’s Welfare-Maximizing Operations
Settlement Process to Ensure 

Incentive Compatibility

Quality Scheduling Pricing Uplift Payment  
Calculation (UPC)

Conventional Unit 
Commitment

Locational  
Marginal Pricing UPC

MWP

xx**ff , , gg**ff : ISO’s Welfare-Maximizing Commitment, generation schedules

ππzz
EE : Zonal Energy Prices

MWPMWPCDCD
 : Make-whole payment for each individual generator to make generators whole to their operation cost

so they do not operate at loss when following ISO’s schedules

xx**ff , , gg**ff

 1
 1

xx**ff , , gg**ff
ππzz

EE
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2.1.1.2 Parameters

S f
C(t) Start-up cost of generator f in period t ($/start)

N f
C(t) No-load cost of generator f in period t ($/hour)

V f
C(t) Variable fuel cost of generator f in period t ($/MWh)

P f   Maximum power output of generator f (MW)

P f Minimum power output of generator f (MW)

R f
SU Startup ramp-rate of generator f (MW/hour)

R f
SD Shutdown ramp-rate of generator f (MW/hour)

Rf
OP Operating ramp-rate of generator f (MW/hour)

MT f
U Minimum uptime of generator f (hour)

MT f
D Minimum downtime of generator f (hour)

P f
dis Maximum power injection from energy storage unit k when discharging (MW)

Pk
char Maximum power withdrawal from energy storage unit k when charging (MW)

Ek Energy storage capacity of storage unit k (MWh)

E k
ini Energy stored by storage unit k at the beginning of the scheduling horizon (MWh)

αk A non-negative factor to control stored energy in energy storage system k for the next  
 time horizon

ηk
dis Discharging efficiency of energy storage unit k; for pumped-hydro units, ηk

dis = 1

ηk
ch Charging efficiency of energy storage unit k; for pumped-hydro units, this equals the ratio of   

 energy injected to energy withdrawn

ηk
loss Self-discharge losses for storage unit k; for pumped-hydro units, ηk

loss = 0

μk Power to energy ratio of storage technology k

Pw(t) Day-ahead forecast of electricity output from wind farm w at time t (MWh)

Ps(t) Day-ahead forecast of electricity output from solar farm s at time t (MWh)

Ph(t) Day-ahead electricity output forecast for hydro plant h at time t (MWh)

Lz(t) Electricity demand in zone z in period t (MWh)

P (t) Scheduled energy exports from zone z to zone nz in period t (MWh)

P (t) Scheduled energy imports to zone z from zone nz in period t (MWh)

P  Transmission capacity between zones z and nz (MW)

MWPf Total make-whole payments made by PJM to generator f for ∀t ∈ ΦT ($)
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2.1.1.3 Continuous Optimization Variables
pf (t) Scheduled production for fossil-fired generator f in period t (MWh)

pn(t) Scheduled production for nuclear plant n in period t (MWh)

ph(t) Scheduled production for hydro plant n in period t (MWh)

pk
ch(t) Scheduled electricity withdrawal to charge storage unit k at time t (MWh)

pk
disc(t) Scheduled electricity injection from the discharge of storage unit k at time t (MWh)

ek(t) Energy stored in storage unit k at time t (MWh)

ps(t) Scheduled production for solar farm s in period t (MWh)

pw(t) Scheduled production for wind farm w in period t (MWh)

Fz,nz(t) Scheduled active power flow between nodes z ∈ ΦZ and nz ∈ Λz
NZ at time t (MWh)

2.1.1.4 Set of Binary Optimization Variables
xf (t) On/off status schedule of generator f in period t

uf (t) Startup schedule of generator f in period t

df (t) Shutdown schedule of generator f in period t

vk(t) Discharging status of storage unit k at time t; 1 if discharging, 0 otherwise

yk(t) Charging status of storage unit k at time t; 1 if charging, 0 otherwise

2.1.1.5 Dual Optimization Variables 
πZ,t

LMP Locational marginal price for energy in zone z period t ($/MWh)

2.1.2 Unit Commitment Formulation
Equations (1a) through (1t) represent the formulation of the unit commitment model. Equation (1a) 
represents the model’s objective function, which is to minimize total electricity production costs. Each 
term of the expression V f

C(t) × pf
  (t) + N f

C(t) × xf
  (t) + S f

C(t) × uf
  (t) represents generator f ’s variable fuel costs, 

no-load costs, and startup costs, respectively. Equation (1b) enforces nuclear generators to run at their 
maximum generation limit consistent with their operation as baseload resources. Equations (1c) through 
(1d) limit the generation of wind and solar producers to their day-ahead forecast. Equation (1e) ensures 
hydro generation schedules remain equal or below the prespecified schedules provided by the plant 
operators. Equations (1f) through (1l) represent fossil-fired generators’ technical electricity generation 
constraints. Equation (1f) represents lower and upper generation bounds for fossil-fired producers. 
Equations (1g) and (1h) represent generators’ up- and down-ramp rate limits during normal, startup, and 
shutdown operations. Equation (1i) represents a state-transition constraint that makes a generator’s on/
off status transition coherent with its corresponding startups and shutdowns. Equations (1j) through 
(1k) enforce the generators’ required minimum uptime and downtime limits. These are included because 
ensuring reliable and economical generator operations requires keeping them online/offline for a 
minimum length of time after a startup/shutdown. Equation (1l) declares that the commitment, startup, 
and shutdown variables are binary. 

Equations (1m) through (1p) model the operating limits of storage units in the commitment problem. 
Equation (1m) guarantees that a storage unit does not operate in discharging and charging mode 
simultaneously. Equation (1n) limits a storage unit’s scheduled power injection to be less than or equal 
to its discharging capacity. Equation (1o) ensures a storage unit’s scheduled power withdrawal does not 
exceed its maximum charging capacity. Equation (1p) sets the energy stored in storage unit k at time t 
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equal to the energy stored at time t – 1, minus the energy discharged, plus the energy charged, minus the 
self-discharge losses. Equation (1q) declares variables that represent charging and discharging status of 
the storage to be binary. Equation (1r) represents the zonal balance constraint that enforces the balance 
of active power in all zones such that the total energy that is injected into a zone and the total energy 
that is withdrawn from that zone are equal at any time. Equations (1s) and (1t) enforce active power flow 
between transmission zones to be within transmission capacity limits between zones. 

Subject to: 
pn(t) = pn ∀n ∈ ΦN,∀t ∈ T (1b)

0 ≤ pw(t) ≤ Pw(t) ∀w ∈ ΦW,∀t ∈ T (1c)

0 ≤ ps(t) ≤ Ps(t) ∀s ∈ ΦS,∀t ∈ T (1d)

0 ≤ ph(t) ≤ Ph(t) ∀h ∈ ΦH,∀t ∈ T (1e)

P f xf(t) ≤ p f(t) ≤ P f xf(t) ∀f ∈ ΦF,∀t ∈ T (1f)

p f(t) – p f(t – 1) ≤ Rf
OP xf  (t – 1) + Rf

SUuf(t) ∀f ∈ ΦF,∀t ∈ T (1g)

p f(t – 1) – p f(t) ≤ Rf
OPxf(t) + Rf

SDdf(t) ∀f ∈ ΦF,∀t ∈ T   (1h)

uf(t) – df(t) = xf(t) – xf(t – 1) ∀f ∈ ΦF,∀t ∈ T   (1i)

  (1j)

 
  (1k)

 
xf(t) ∈ {0,1},ui,t ∈ {0,1},di,t ∈ {0,1} ∀f ∈ ΦF,∀t ∈ T   (1l)

vk(t) + yk(t) = 1 ∀k ∈ ΦK,∀t ∈ T   (1m)

0 ≤ pk
disc(t) ≤ vk(t)Pdis ∀k ∈ ΦK,∀t ∈ T   (1n)

0 ≤ pk
ch(t) ≤ yk(t)Pk

ch ∀k ∈ ΦK,∀t ∈ T   (1o)

vk(t) ∈ {0,1},yk(t) ∈ {0,1}  ∀k ∈ ΦK,∀t ∈ T   (1q)

 
Fz,nz(t) ≤ PF

z,nz ∀z ∈ Z, ∀nz ∈ Λz
NZ,∀t ∈ T (1s)

Fz,nz(t) ≥ – PF
z,nz   ∀z ∈ Z, ∀nz ∈ Λz

NZ,∀t ∈ T (1t)

Pf ,t,xf ,t,uf ,t,df ,t,Pn,t,Ps,t,Pw,t,Pf ,t,pk,t
ch,pk,t

disc,ek,t,vk,t,yk,t,Fn,m,t 
∑ ∑(V f

C(t) × pf
  (t))+ N f

C(t) × xf
  (t) + S f

C(t) × uf
  (t)) 

   (1a)     

∑ 
pf(t) +

 ∑ 
pw(t) +

 ∑ 
ps(t) +

 ∑ 
pk

disc(t) –
 ∑ 

p j
ch(t) –

 ∑ 
P (t) +

 ∑ 
P (t) – Lz(t) =  

   (1r)
f∈Λz

F w∈Λz
W s∈Λz

S k∈Λz
K k∈Λz

K nz∈Λz
NZ nz∈Λz

NZ

Fz,nz(t) ∀z ∈ ΦZ,∀t ∈ T

ek(t) = ek(t – 1) –   + (pk
ch(t) × ηk

ch) – (ej(t) × ηk
loss) ∀k ∈ ΦK,∀t ∈ T (1p) 

xf(t) ≥       ∑       uf(r) ∀f ∈ ΦF,∀t ∈ T

xf(t) ≤ 1 –       ∑       df(r) ∀f ∈ ΦF,∀t ∈ T
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2.1.3 Economic Dispatch
Equations (2a) through (2d) represent the formulation used for calculating the locational marginal prices 
for energy. This model is a relaxed version of the unit commitment model from the previous section in 
which binary commitment, startup, and shutdown variables (xf (t), uf (t), df (t), vk(t) and yk(t)), are set 
to their welfare-maximizing schedules, (x*f (t), u*f (t), d*f (t), v*k(t) and y*k(t)), serving now as constraints 
represented by Equations (2b) and (2c). The relaxation results in a linear model whose dual variables 
yield the market-clearing prices for energy in each zone z, πZ,t

LMP, while balancing the energy demand and 
supply, as outlined by Equation (2d).

Subject to constraints (1b) through (1h), (1n) through (1p), (1s) through (1t), and

2.1.4 Uplift Payment Calculation 
Equation (3a) calculates the make-whole payment given the electricity production, startup, and shutdown 
schedules x*f (t), u*f (t), and d*f (t); the generators’ costs; and zonal marginal prices πZ,t

LMP. Here, the daily 
costs and revenues of all generators are calculated and compared. Resources that follow the transmission 
operator’s dispatch instructions and realize a negative profit on the day receive make-whole payments 
such that their total in market revenues and MWP become equal to their total daily operation costs. 

2.2 Data
To initialize our model, we gathered detailed data on the demand for electricity in PJM, the set of 
generators deployed in PJM, fuel costs associated with these generators, renewables generation in PJM’s 
footprint, energy storage assets, transmission constraints present between modeled PJM zones, imports/
exports between PJM and external grid systems, and imports/exports between states within PJM. A full 
accounting of these data is documented in Appendix A.

xf(t) = x*f(t), uf(t) = u*f(t), df(t) = d*f (t)  (2b)

vf(t) = v*k(t), yf(t) = y*k(t) (2c)

∑ f ∈Λz
F pf(t) + ∑w∈Λz

w pw(t) + ∑s∈Λz
s ps(t) + ∑k∈Λz

k pk
disc(t) – ∑k∈Λz

k p j
ch(t) – ∑nz∈Λz

NZ P (t)  
+ ∑nz∈Λz

NZ P (t) – Lz(t) = Fz,nz(t) : π z,t
LMP  ∀z ∈ ΦZ,∀t ∈ T     (2d)

(V f
C(t) × pf(t) + N f

C(t) × xf(t) + S f
C(t) × uf(t)) (2a)Min

Pf t,Pnt,Pst,Pwt,Pf t,pkt
ch,pkt

disc,ekt,fz,zn,t

∑ 
t ∈ ΦT

∑ 
f ∈ ΦF

MWPg
T = – Min {0, ∑  (πZ,t

LMP × p*f,t – V f
C(t) × p*f(t) + N f

C(t) × x*f(t) + S*f(t) × u*f(t))} (3a)
t ∈ ΦT
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RESULTS

3.1 EMST Performance
Because we are modeling plants known to be in the PJM footprint with known performance 
characteristics, the closer the simulated prices and generation mix to the actual prices and generation 
mix, the more confident we can be in the results of our model during counterfactual scenarios.

In Table 1, we present descriptive statistics comparing the observed prices in PJM during 2019 to the 
prices simulated by EMST over the same period. We see that our simulation is well-centered but does not 
fully capture the wider variation present in the observed prices.

Table 1. Descriptive statistics of PJM-wide prices in 2019

Time  
Series # of Obs. Mean,  

$/MWh

Std. 
Deviation, 

$/MWh

Median,  
$/MWh

Min., 
$/MWh

Max.,  
$/MWh Skewness Kurtosis

Observed 8,760 25.99 9.26 24.36 8.8 160.36 3 20.74

EMST 8,760 26.43 4.94 26.05 14.23 55.67 0.96 2.03

We also calculate a Pearson’s product-moment correlation, Spearman’s ρ rank correlation coefficient, 
and Kendall’s τ rank correlation coefficient.5 Our correlation analysis is shown in Table 2. All three tests 
reject, with more than 95% confidence, the null hypothesis of zero correlation between the observed 
prices and the time series of prices simulated by EMST.

Table 2. Correlation between observed and EMST prices in 2019

Time Series Obs.
Pearson’s 

Product-Moment 
Correlation

Spearman’s Kendall’s 

Full Year (2019) 8,760 0.66 0.67 0.48

Finally, we compare the generation mix that was observed in PJM in 2019 to the generation mix simulated 
by EMST. These data are shown in Table 3. We note a few key differences in the observed utilization 
of power generators compared to our simulated results. First, our simulations show more electricity 
generation from nuclear assets. This is because EMST assumes that nuclear generators operate at full load 
for all hours of 2019 and does not account for turndowns. Second, Table 3 shows that EMST dispatches 
more electricity from natural gas units and less from coal units compared to 2019 observations. Our 
model selects the lowest cost asset, often a natural gas combined-cycle unit, and although it ensures that 
operational reliability requirements are met, it does not consider broader grid security and reliability 
concerns. In reality, PJM will consider these factors and sometimes dispatch out-of-merit-order units, 
like more expensive coal, on a “must-run” basis, effectively trading lower costs for improved grid 
reliability. We do not have sufficient data to include must-run requirements and so our simulation does 
not address these instances. Last, our simulated renewables mix—especially that of wind—is higher 
than the observed renewable mix. In practice, PJM will sometimes curtail renewable assets because of 
transmission congestion. EMST does not capture these choices either, instead modeling full production 
from these resources in all hours of the year.

5 We note that conducting a rank correlation may be preferable to a Pearson’s product-moment because rank correlations are robust to 
nonnormally distributed time series (Kowalski 1972).
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Table 3. Actual versus simulated generation mix in PJM in 2019

Fuel Type Percent of Observed Mix Percent of Simulated Mix

Coal 23.72% 17.73%

Gas 36.08% 38.70%

Hydro 1.99% 2.19%

Nuclear 33.64% 37.80%

Oil and other fuels 1.38% 0.07%

Solar 0.29% 0.36%

Wind 2.90% 3.17%

In sum, though, we argue that the discrepancy present between observed and simulated prices and 
generation mixes are the result of the model being unable to capture shocks that create real-world must-
run requirements and/or price spikes. Because of limitations in available data between transmission 
zones, EMST divides PJM into nine transmission regions, depicted in Figure 2. EMST transmission 
zones in PJM. This contrasts with the PJM-published transmission zones shown in Figure 3. PJM 
transmission zones (PJM 2021a). The coarseness of the EMST transmission topography relative to the 
true grid topography dampens the impact of exogeneous shocks like unplanned outages or anomalous 
weather events. The model projects a broader fleet of available generators in each simulated transmission 
zone, providing an artificial backstop to supply shocks that are not manifest in the actual system. That 
the simulation does not fully capture some extreme exogeneous effects yet still has well-centered prices, 
strong correlation, and accurate generation mixes when compared to observed data, speaks to the 
general quality of the simulation for the purposes of this paper—namely, to assess the changes in market 
participation on overall system performance (rather than predicting specific shocks and corresponding 
price events).

We conclude, then, that EMST provides a reliable avenue through which to estimate profits to generating 
assets, the average cost to serve load, and the emissions intensity of the dispatched system and will use 
these simulated results to analyze coalition stability. For a deeper discussion on EMST’s fidelity, see 
Appendix B.
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Figure 2. EMST transmission zones in PJM

Figure 3. PJM transmission zones (PJM 2021a)
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3.2 PJM Base Case
Tables 4, 5, and 6 present the key results of the base case in 2019, where every state participates in the 
PJM’s wholesale energy market. Table 4 depicts the generation mix of each state as well as that state’s total 
generation (MWh) that was dispatched by EMST. The aggregated production shown in Table 4 is built by 
the hourly dispatch outcomes of the simulation. Combined with hourly prices and the cost to generate 
this electricity, we build Table 5, which shows profits to each generator type in each state.

It is interesting to note the different profits to renewable assets. Solar, wind, and hydro generators are 
all modeled in EMST as having zero marginal costs. Yet, the profits, in $/MWh, differ for these assets 
not only across states but also within states. This is because their revenue is dependent on the hours that 
they are producing and the market clearing price in those given hours, an important consideration for 
intermittent resources such as these.

While Table 5 captures a measure of welfare to suppliers in each state, Table 6 offers additional data from 
our simulation, including the average cost to serve load and annual CO2 emissions, two factors that will 
contribute to the overall welfare of the state.6 Here, the average cost to serve load is the price that in-state 
retailers pay to the wholesale generators so they can meet consumer demand and the annual CO2 emissions 
are the total tons of carbon emitted by in-state generators over the course of 2019. Our simulated results 
meet our expectations. We see, for instance, that annual emissions are highest in states with the highest 
generation, drawing a connection between the production quantities in Table 4 and climate impacts.

Of course, the base case results have standalone interest, but the real contribution of this work is to 
understand how states are impacted by the defection of another in the consortium. We offer those results 
in the next section.

Table 4. Generation mix for each state in the base base

State

Solar 
Power 

Generation,  
%

Wind 
Power 

Generation, 
%

Hydro 
Power 

Generation, 
%

Coal 
Power 

Generation, 
%

Natural 
Gas Power 

Generation, 
%

Nuclear 
Power 

Generation, 
%

Oil 
Power 

Generation, 
%

Total State 
Electricity 

Generation,  
MWh

DC 9.171 - - - 90.829 - - 54,343

DE 0.902 0.096 - 1.037 97.848 - 0.117 3,366,672

IL 0.015 8.575 0.063 18.191 9.221 63.936 - 143,879,136

IN 0.089 19.845 0.235 35.630 44.201 - - 29,229,172

KY 0.201 - 13.163 75.147 11.488 - - 7,090,584

MD 0.905 1.033 10.905 18.422 20.191 48.541 0.003 30,820,009

MI 0.009 - 0.391 - 30.717 68.883 - 27,685,361

NC 34.230 10.357 34.833 20.580 - - - 2,960,723

NJ 1.053 0.022 0.065 0.104 50.042 48.698 0.018 62,368,010

OH 0.048 1.843 0.528 28.183 53.025 15.953 0.421 117,181,608

PA 0.018 0.781 2.064 13.299 53.288 30.550 - 260,738,578

TN - - - 68.236 31.764 - - 1,685,533

VA 1.172 - 4.729 2.576 26.964 64.559 - 48,413,776

WV - 4.597 12.349 74.115 8.939 - - 21,219,214

6 A richer discussion on this topic is reserved for Section 3.4, Welfare Calculations.
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Table 5. Profits to generation types in the base case

State
Solar 

Profits, 
$/MWha

Wind 
Profits, 
$/MWha

Hydro 
Profits,  
$/MWh

Coal 
Profits,  
$/MWh

Natural 
Gas 

Profits,  
$/MWh

Nuclear 
Profits,  
$/MWh

Oil 
Profits, 
$/MWh

Average 
Profits to All 
Generators,  

$/MWh

DC $27.939 - - - $1.321 - - $3.762

DE $27.625 $26.587 - $11.823 $4.931 - $0.00 $5.222

IL $25.962 $23.620 $26.524 $2.191 $1.661 $14.748 - $12.027

IN $27.902 $27.110 $29.061 $0.941 $2.578 - - $6.948

KY $25.610 - $24.482 $1.079 $0.086 - - $4.095

MD $27.778 $27.268 $28.975 $21.360 $1.641 $17.072 $0.00 $16.246

MI $27.902 - $29.061 - $3.066 $17.067 - $12.814

NC $27.874 $27.386 $29.070 $5.285 - - - $23.591

NJ $27.625 $26.587 $29.030 $7.366 $4.879 $14.692 $0.082 $9.920

OH $27.902 $27.110 $29.061 $0.780 $3.767 $17.067 $8.690 $5.643

PA $25.132 $24.560 $25.092 $0.859 $2.604 $14.352 - $6.600

TN - - - $9.792 $6.222 - - $8.658

VA $27.825 - $29.065 $3.317 $2.095 $17.072 - $3.372

WV - $27.330 $29.061 $1.186 $2.741 - - $5.969
a Solar and wind profits do not include subsidies or other renewable credits. 
 
Table 6. More results from the base case

State Demand, 
MWh

Average Cost to 
Serve Load, 

 $/MWh

  Annual CO2 Emissions 
from Generation, 

tons

Net Exports (+) or 
Net Imports (-) 

from PJM, 
MWh

DC 8,772,540 $27.755 9,696 -8,718,198

DE 12,133,001 $27.748 2,352,029 -8,766,328

IL 96,511,187 $25.441 38,408,952 47,367,949

IN 21,194,371 $27.608 16,065,906 8,034,801

KY 25,082,353 $25.929 5,585,576 -17,991,769

MD 66,892,050 $27.827 9,774,654 -36,072,041

MI 5,864,708 $27.608 3,472,462 21,820,652

NC 3,565,230 $27.775 15,649 -604,507

NJ 76,910,073 $27.579 13,145,484 -14,542,063

OH 155,915,008 $27.704 62,074,508 -38,733,399

PA 155,018,292 $25.949 95,672,023 105,720,286

TN 4,214,924 $27.805 744,770 -2,529,391

VA 123,462,023 $27.780 6,319,909 -75,048,248

WV 31,670,684 $27.803 16,950,714 -10,451,470
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3.3 Effect of State Defections on Other States’ Electricity Industry

We model the defection of five different states from the wholesale energy markets in PJM. New Jersey 
and Maryland were chosen for threats they have made to leave PJM’s capacity market in response to a 
change in market rules that would have made state renewable energy targets more difficult to achieve 
(Morehouse 2020; Walton 2020).7 The defection we model of exiting the wholesale electricity market 
altogether is beyond the threats currently made by these states to exit the capacity market, but it is 
not out of the realm of possibility that states could broaden their market defection. Importantly, this 
modeling allows us to evaluate the effects states have on other states in a coalition and allows us to 
extend the analysis already conducted by the market monitor regarding New Jersey and Maryland 
exiting the capacity market (Monitoring Analytics 2020a, 2020b). We selected Virginia as another 
potential defector because it is the largest importer of electricity in PJM and, similarly, we selected 
Pennsylvania and Illinois because they are the largest and second largest exporters of electricity within 
the RTO, respectively. Our simulations did not include analysis of the outcomes in the defecting state.

Table 7. Total generation after a state defection

State Demand, 
MWha

Net Exports (+) or 
Net Imports (-) 

from PJM, MWhb

Total  
Generation, 

MWh

Percent Change in Total Generation  
Compared to Base Case Simulationc

Base Case NJ Exit MD Exit VA Exit PA Exit IL Exit

DC 8,772,540 -8,718,198 54,343 -0.76% -8.82% -19.17% 96.46% 12.83%

DE 12,133,001 -8,766,328 3,366,672 -3.15% -15.50% -15.14% 88.04% 4.72%

IL 96,511,187 47,367,949 143,879,136 -0.09% -1.37% -3.68% 0.87% N/A

IN 21,194,371 8,034,801 29,229,172 -1.73% -14.34% -30.42% 14.43% 18.63%

KY 25,082,353 -17,991,769 7,090,584 -2.88% -5.74% -12.65% 59.97% 5.51%

MD 66,892,050 -36,072,041 30,820,009 0.15% N/A -9.17% 25.26% 7.78%

MI 5,864,708 21,820,652 27,685,361 -0.39% -2.40% -6.42% 2.78% 2.78%

NC 3,565,230 -604,507 2,960,723 -0.21% -0.85% -2.58% 1.31% 0.99%

NJ 76,910,073 -14,542,063 62,368,010 N/A -6.89% -9.68% 31.21% 1.67%

OH 155,915,008 -38,733,399 117,181,608 -0.74% -10.37% -21.48% 10.41% 13.85%

PA 155,018,292 105,720,286 260,738,578 -0.84% -2.02% -5.59% N/A 2.26%

TN 4,214,924 -2,529,391 1,685,533 0.01% -1.16% -3.86% 0.98% 0.84%

VA 123,462,023 -75,048,248 48,413,776 -0.21% -6.98% N/A 15.32% 11.01%

WV 31,670,684 -10,451,470 21,219,214 -8.43% -30.61% -52.69% 45.55% 45.03%
a Demand figures are for the base case and are assumed to be unchanged under defection.
b Net exports/imports are for the base case and are calculated as Total Generation—Demand.
c The change in total generation is not modeled for the defecting state.

Table 7 depicts the results of a state defection on the total production of electricity by each state. The 
Base Case is shown, and the effects of a defection are captured in the “percent change” columns for 
each relevant defection. Negative percent changes are colored red. As major suppliers of electricity to 

7 A capacity market is intended to ensure resource adequacy to meet peak load demand at any time throughout the year. PJM specifies 
the demand for capacity three years out and bidders offer to ensure their capacity is available at that time at a given price per MW 
(technically a $/MW-month offer). These capacity payments accrue to the bidders and are paid by the customers of the utilities serving 
load in PJM. Withdrawing from the capacity market means that resource adequacy requirements must be met by other means. They 
cannot be simply ignored by the utilities in the state defecting from the capacity market.
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the entire system, when Pennsylvania or Illinois defect, all states are called upon to make up the supply 
shortage. Generation changes post-defection can be dramatic: if Pennsylvania leaves, for example, New 
Jersey and Ohio end up carrying 45% of the supply deficit (on a MWh basis). 

The opposite effect holds when the largest importer, Virginia, leaves PJM. With heavy demand lifted from 
the system, states everywhere reduce their generation. Interesting, again, is the effect on Ohio. Even though 
Ohio does not share a border with Virginia, Ohio would need to reduce generation by over 20% under a 
Virginia-defection scenario, reflecting the long reach of spillover effects in large transmission systems.

With the two heavy exporters and one heavy importer marking the bounds, the effects created by New 
Jersey or Maryland choosing to exit PJM’s wholesale market fall within those margins. Maryland, being 
a larger importer than New Jersey, creates unambiguous effects to total generation that fall in line—but 
of lesser scale—with a Virginia defection. Interesting, though, is the impact a New Jersey defection has 
on total generation. In this scenario, most states reduce output as expected, but Maryland and Tennessee 
slightly increase production, albeit by a very small amount.

Table 8. Annual CO2 emissions after a state defection

State Demand, 
MWha

Net Exports (+) 
or Net Imports (-), 

MWhb

CO2 
Emissions, 

tons

Percent Change in Annual CO2 Emissions 
Compared to Base Case Simulationc

Base Case NJ Exit MD Exit VA Exit PA Exit IL Exit

DC 8,772,540.0 -8,718,197.5 9,696 -0.85% -27.74% -42.08% 41.06% 44.04%

DE 12,133,000.7 -8,766,328.3 2,352,029 -36.60% -44.10% -9.92% 23.62% 3.34%

IL 96,511,187.3 47,367,948.8 38,408,952 -0.18% -3.94% -10.30% 3.06% N/A

IN 21,194,371.2 8,034,800.9 16,065,906 -2.58% -21.47% -42.49% 21.87% 28.25%

KY 25,082,353.2 -17,991,769.2 5,585,576 -3.40% -5.70% -13.32% 78.10% 4.72%

MD 66,892,049.9 -36,072,041.1 9,774,654 0.16% N/A -12.76% 36.34% 11.24%

MI 5,864,708.3 21,820,652.4 3,472,462 -1.27% -7.79% -20.26% 9.01% 9.01%

NC 3,565,229.9 -604,507.4 15,649 -1.04% -4.13% -12.52% 6.37% 4.81%

NJ 76,910,072.7 -14,542,062.8 13,145,484 N/A -14.52% -19.18% 66.31% 3.53%

OH 155,915,007.5 -38,733,399.3 62,074,508 -1.32% -17.96% -34.85% 18.76% 24.73%

PA 155,018,291.6 105,720,286.3 95,672,023 -1.30% -4.41% -11.97% N/A 5.48%

TN 4,214,923.8 -2,529,390.9 744,770 0.01% -1.16% -3.86% 0.98% 0.84%

VA 123,462,023.3 -75,048,247.7 6,319,909 -0.65% -24.28% N/A 54.95% 39.41%

WV 31,670,684.1 -10,451,470.3 16,950,714 -10.96% -38.37% -66.04% 57.34% 56.90%
a Demand figures are for the base base and are assumed to be unchanged under defection.
b Net exports/imports are for the base case and are calculated as Total Generation—Demand.
c The change in the annual CO2 emissions is not modeled for the defecting state.

We offer another lens into these defection effects with Table 9 Average cost to serve load after a state 
defection, where we report the annual CO2 emissions under different scenarios. For readability, we color the 
text red for negative percent changes in CO2 emissions. The results of Table 9. Average cost to serve load after 
a state defection are closely tied to our total generation results from Table 7. In all cases, if a state decreases 
total generation after a state defection, then the amount of CO2 that is emitted by in-state power generation 
sources also decreases. The interesting comparison is in the magnitude of these changes. When any of the 
net importers defects, Ohio reduces its total generation less than the amount that CO2 emissions drops. That 
is, more CO2 intensive generators in Ohio are falling out of the merit order post-defection. But the opposite 



Nicholas Institute for Energy, Environment & Sustainability, Duke University  |  17

occurs when a net exporter defects. Under Pennsylvania and Illinois defection scenarios, Ohio increases its 
supply by 10.41% and 13.85%, respectively, while CO2 emissions jump by 18.76% and 24.73%. Indeed, the fleet 
of plants that are on the margin throughout the year produce more CO2 per MWh than the inframarginal 
plants. By evaluating the CO2 emissions before and after different defection scenarios, we get a sense of the 
impacts that one state’s actions can have not only on another state’s production, but also on any climate 
initiatives. We return to this concept of climate spillovers in the next section.

In Table 9 we report the impact of defection on the average cost to serve load. A negative percent change 
is represented by red text. We define the average cost to serve load as the sum of each hour’s in-state 
demand multiplied by the clearing price of the wholesale market in that given hour. This measure is, 
essentially, the cost that the retailers would incur to buy power from the wholesale electricity market 
before marking it up and selling it to consumers. The value represents our proxy for consumer welfare 
with higher values generally equating to larger charges on electricity bills across the state. We return to 
this concept in Section 3.4, Welfare Calculations. 

Table 9. Average cost to serve load after a state defection

State Demand, 
MWha

Net Exports (+) 
or Net Imports (-) 

from PJM, 
MWhb

Average Cost 
to Serve 

Load, 
$/MWh

Percent Change in Average Cost to Serve Load 
Compared to Base Case Simulationc

Base Case NJ Exit MD Exit VA Exit PA Exit IL Exit

DC 8,772,540 -8,718,198 $27.755 -0.52% -4.28% -10.12% 7.26% 4.75%

DE 12,133,001 -8,766,328 $27.748 -4.53% -3.95% -4.53% 8.04% 1.13%

IL 96,511,187 47,367,949 $25.441 -0.52% -2.23% -6.39% -0.03% N/A

IN 21,194,371 8,034,801 $27.608 -0.48% -4.19% -10.14% 1.76% 4.72%

KY 25,082,353 -17,991,769 $25.929 -0.16% -2.60% -6.31% 12.48% 2.98%

MD 66,892,050 -36,072,041 $27.827 -0.88% N/A -9.64% 7.38% 4.42%

MI 5,864,708 21,820,652 $27.608 -0.48% -4.19% -10.14% 1.76% 4.72%

NC 3,565,230 -604,507 $27.775 -0.53% -4.28% -10.21% 6.78% 4.75%

NJ 76,910,073 -14,542,063 $27.579 N/A -3.99% -4.52% 7.68% 1.08%

OH 155,915,008 -38,733,399 $27.704 -0.49% -4.20% -10.12% 1.70% 4.73%

PA 155,018,292 105,720,286 $25.949 -1.23% -2.62% -5.02% N/A 2.13%

TN 4,214,924 -2,529,391 $27.805 -0.50% -4.24% -10.27% 1.63% 4.74%

VA 123,462,023 -75,048,248 $27.780 -0.54% -4.27% N/A 5.99% 4.73%

WV 31,670,684 -10,451,470 $27.803 -0.49% -4.23% -10.24% 4.19% 4.73%
a Demand figures are for the base case and are assumed to be unchanged under defection. 
b Net exports/imports are for the base case and are calculated as Total Generation—Demand. 
c The change in average cost to serve load is not modeled for the defecting state.

The insight of Table 9 is intertwined with the balance of supply and demand for the PJM system. Under 
the base case, the average cost to serve load reflects the co-optimization of the whole system. If a net 
exporter exits, it takes with it a larger volume of supply than demand and the newly equilibrated system 
must clear with more expensive units than the base case. Thus, the average cost to serve load increases.8 

8 This generally holds for all states that remain after a net exporter exits, with one exception. When Pennsylvania defects, the average cost 
to serve load in Illinois decreases. We note, though, that the magnitude of this change is miniscule.
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By contrast, if a net importer exits, then demand across the system drops more than the supply lost by 
the defecting state. The most expensive generators (not all of them being singularly located in the exiting 
state) can fall out of the merit order and the average cost to serve load unambiguously decreases for all 
states that remain in PJM.

Table 7 and Table 9 demonstrate the effects of co-optimization and the long reach of an interconnected 
consortium and Table 9. Average cost to serve load after a state defection summarizes the emissions 
intensity of each state’s generation fleet that is dispatched throughout the year.

Finally, in Table 10 we present generation profits as a proxy for supplier welfare. The consequences of 
defection on generation profits suggests heterogeneous impacts likely tied to generation mix across 
states. Here, we need to recognize that like-generators have like-costs, implying that similar types of 
generators in a state’s fleet will cluster around different marginal cost levels. In other words, the different 
coal generators in a state—even those that were built in different time periods—will typically have 
similar marginal cost levels. The same can be said for the natural gas combined cycle fleet, the natural 
gas simple cycle fleet, and other technologies. A supply curve can be constructed, then, ordering lowest 
cost generators to highest cost and we will generally observe clumping of technologies along the supply 
axis. When demand shifts after a state defection, co-optimization under the new system might shift 
in-state generator merit order to include or exclude these fuel/technology clusters, impacting the overall 
profitability to suppliers. So, while a net importer or net exporter defecting unambiguously affects total 
generation, total CO2 emissions, and average cost to serve load, how these defections impact supplier 
profits is less apparent on the surface and depends on in-state generation dynamics.

Table 10. Generation profits after a state defection

State Demand, 
MWha

Net Exports (+) 
or Net Imports (-), 

MWhb

Generation 
Profits, 
$/MWh

Percent Change in Generation Profits  
Compared to Base Case Simulationc

Base Case NJ Exit MD Exit VA Exit PA Exit IL Exit

DC 8,772,540 -8,718,198 $3.762 4.97% 2.45% 4.42% -0.83% 3.55%

DE 12,133,001 -8,766,328 $5.222 -42.58% -20.72% -7.50% -49.26% 3.19%

IL 96,511,187 47,367,949 $12.027 -0.79% -2.76% -7.92% -0.81% N/A

IN 21,194,371 8,034,801 $6.948 0.01% 4.39% 11.69% -8.57% -2.72%

KY 25,082,353 -17,991,769 $4.095 2.24% 2.24% 7.07% 41.96% 0.25%

MD 66,892,050 -36,072,041 $16.246 -1.81% N/A -4.90% -9.86% -0.73%

MI 5,864,708 21,820,652 $12.814 -0.64% -6.12% -13.94% 1.24% 6.99%

NC 3,565,230 -604,507 $23.591 -0.47% -4.25% -9.86% 6.13% 4.55%

NJ 76,910,073 -14,542,063 $9.920 N/A -3.20% -0.47% -4.98% 1.22%

OH 155,915,008 -38,733,399 $5.643 -1.19% -4.26% -13.05% -3.59% 4.24%

PA 155,018,292 105,720,286 $6.600 0.64% -3.17% -6.50% N/A 3.79%

TN 4,214,924 -2,529,391 $8.658 -1.36% -12.04% -27.93% 5.44% 14.26%

VA 123,462,023 -75,048,248 $13.372 -0.80% -1.07% N/A -2.72% -1.01%

WV 31,670,684 -10,451,470 $5.969 6.46% 26.48% 60.67% -13.15% -17.38%
a Demand figures are for the base case and are assumed to be unchanged under defection.
b Net exports/imports are for the base case and are calculated as Total Generation—Demand.
c The change in generation profits is not modeled for the defecting state.
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3.4 Welfare Calculations
Our total welfare calculations follow from the findings presented in Section 3.3, Effect of State Defections 
on Other States’ Electricity Industry. Producer surplus is easily determined by multiplying the average 
profit per MWh of generation by the total generation for each state in each simulated scenario. These 
results are shown in Table 11. Percent changes colored green indicate that producer surplus has increased 
while percent changes colored red reflect a reduction in producer surplus in that state. The calculation of 
producer surplus in exit scenarios factors both the change in average profit per MWh and the change in 
total generation in the state.

We can gain insight from changes in producer surplus. Broadly speaking, the trend of Table 11 suggests 
that if a net importer exits the PJM energy market, then producer surplus in the remaining states 
decreases; the opposite effect is found when a net exporter exits the PJM energy market.

There are two exceptions to this rule: Washington, DC, and Delaware. Consider Delaware, for example, 
and observe that producer surplus decreases by 4.59% when Pennsylvania exits from the energy 
market. When such a large net exporter is removed from the system, this supply needs to be made up 
by other states, including Delaware. Indeed, we see from Table 7 that a Pennsylvania defection increases 
generation in Delaware by 88.04%. Yet, Table 10 shows per-MWh profitability of Delaware generation is 
reduced by 49.26% under the same scenario. The drop in average profitability dominates the increase in 
generation. A similar argument can be made with Washington, DC, where, when New Jersey defects, the 
increased profitability of generators dominates the drop in production.

Table 11. Producer surplus for each state under different simulations

State
Producer  
Surplus, $

Percent Change in Producer Surplus  
Compared to Base Case Simulationa

Base Case NJ Exit MD Exit VA Exit PA Exit IL Exit

DC 204,448 4.17% -6.59% -15.60% 94.84% 16.84%

DE 17,582,294 -44.39% -33.01% -21.50% -4.59% 8.06%

IL 1,730,433,535 -0.88% -4.09% -11.31% 0.06% N/A

IN 203,084,173 -1.73% -10.58% -22.28% 4.63% 15.41%

KY 29,033,448 -0.71% -3.62% -6.47% 127.09% 5.77%

MD 500,707,376 -1.66% N/A -13.63% 12.92% 7.00%

MI 354,759,876 -1.03% -8.37% -19.47% 4.06% 9.97%

NC 69,846,394 -0.69% -5.06% -12.19% 7.52% 5.58%

NJ 618,661,033 N/A -9.87% -10.10% 24.68% 2.91%

OH 661,264,989 -1.92% -14.18% -31.73% 6.45% 18.67%

PA 1,720,955,038 -0.20% -5.13% -11.73% N/A 6.14%

TN 14,593,773 -1.35% -13.06% -30.71% 6.47% 15.22%

VA 647,413,157 -1.01% -7.97% N/A 12.18% 9.89%

WV 126,666,334 -2.52% -12.23% -23.99% 26.41% 19.83%
a The change in producer surplus is not modeled for the defecting state.

We also make a proxy calculation for consumer surplus using wholesale energy receipts. The true 
consumer surplus would require a willingness-to-pay measure for electricity by individuals in each state. 
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Because we are primarily interested in directional effects, we argue that the payments made to wholesale 
generation are a sufficient measure for capturing changes in consumer surplus under different defection 
scenarios. Our measure, consumer wholesale costs, has a negative effect on true consumer surplus. That 
is, if we find that our consumer wholesale costs increase, then we infer a decrease in true consumer 
surplus. To calculate this value, we multiply the average cost to serve load by the total demand of the 
state. This is the amount of money that would be conveyed to retailers to provide utility services to 
electricity consumers.

The literature suggests our approach for understanding changes in true consumer surplus are viable. 
First, electricity consumers are relatively unresponsive to marginal price fluctuations (Borenstein 2009; 
Borenstein and Bushnell 2018; Shin 1985). Rather, Ito (2014) found evidence that consumption decisions 
are more influenced by the average cost of delivered electricity that consumers face. Furthermore, Zhu 
et al. (2018) determined that, as with most goods, the long-run demand for residential electricity was 
more elastic than short-run demand. We argue, then, that consumers would measure their welfare based 
on the average cost they are paying for electricity and would, in the short run, maintain their current 
consumption even under average price changes on their electric utility bill. In sum, decreased average 
price levels will have salience to consumers and reflect an increase in consumer welfare.

We are left, then, with determining how retailers may or may not change their pricing behavior based 
on changes to the wholesale pricing. Here again the literature suggests that fluctuations in the marginal 
costs of producers are often absorbed by the retailers (Davis and Muehlegger 2010; Friedman 1991; 
Puller and West 2013). That is, retail suppliers will likely not pass-through high-frequency marginal cost 
fluctuations. Instead, we claim that changes in levels (i.e., average cost) will trigger pricing adjustments.

Therefore, under a state defection, if the retailers in a state that remains in the coalition faces lower 
average costs of supply, we would expect that the lower average cost would trigger an adjustment to 
retail utility bills downward. Consumers would not adjust their consumption profile in the near term, 
consuming the same amount of electricity for a lower retail price of electricity, improving their welfare. 
By contrast, consumer welfare would decrease analogously with an increase in the average cost of supply, 
following the same logic that higher average costs paid by retailers to generating assets would translate to 
higher average retail prices paid by the consumer.

In Table 12 we show how different state defections impact consumer wholesale costs. Percentages colored 
green represent decreases in consumer wholesale costs which mean increases in true consumer surplus. 
Percentages colored red depict the opposite effect. The results are unambiguous and as expected: when 
a net-importing state leaves the PJM energy market, consumers in the remaining states are better off 
because of the lower retail prices of electricity that result. Upon defection, the net importer no longer 
burdens supply in the states that stay in the consortium, reducing total payments to the remaining 
generation fleet.

Table 12. Consumer wholesale costs for each state under different simulations

State
Consumer  

Wholesale Costs, 
$

Percent Change in Consumer Wholesale Costs  
Compared to Base Case Simulationa

Base Case NJ Exit MD Exit VA Exit PA Exit IL Exit
DC 243,485,679 -0.52% -4.28% -10.12% 7.26% 4.75%

DE 336,662,966 -4.53% -3.95% -4.53% 8.04% 1.13%

IL 2,455,339,123 -0.52% -2.23% -6.39% -0.03% N/A
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State
Consumer  

Wholesale Costs, 
$

Percent Change in Consumer Wholesale Costs  
Compared to Base Case Simulationa

Base Case NJ Exit MD Exit VA Exit PA Exit IL Exit

IN 585,143,593 -0.48% -4.19% -10.14% 1.76% 4.72%

KY 650,365,982 -0.16% -2.60% -6.31% 12.48% 2.98%

MD 1,861,374,783 -0.88% N/A -9.64% 7.38% 4.42%

MI 161,915,465 -0.48% -4.19% -10.14% 1.76% 4.72%

NC 99,023,390 -0.53% -4.28% -10.21% 6.78% 4.75%

NJ 2,121,117,550 N/A -3.99% -4.52% 7.68% 1.08%

OH 4,319,477,984 -0.49% -4.20% -10.12% 1.70% 4.73%

PA 4,022,593,145 -1.23% -2.62% -5.02% N/A 2.13%

TN 117,197,373 -0.50% -4.24% -10.27% 1.63% 4.74%

VA 3,429,827,551 -0.54% -4.27% N/A 5.99% 4.73%

WV 880,553,245 -0.49% -4.23% -10.24% 4.19% 4.73%
a The change in consumer wholesale costs is not modeled for the defecting state.

Comparing the results presented in Table 11 and Table 12 illustrates the tradeoffs made by states between 
producers and consumers. For nearly all states in all scenarios, what is good for producers is bad for 
consumers and vice versa. Whether a state is better or worse off because of a defection is a broader 
welfare question that must include some equity considerations. Our simulations predict two distinct 
exceptions to this producer/consumer tradeoff: Delaware is unambiguously worse off if Pennsylvania 
defects (both producers and consumers lose), and Washington, DC, is unambiguously better off if New 
Jersey defects (both producers and consumers gain).9

For all other states in all other scenarios, our evaluation of total welfare to remaining states after a 
defection must account for the typical tradeoffs between producers and consumers. We believe this is 
a distinctly political question with, likely, a political answer. While beyond the scope of this paper, we 
foresee a total welfare calculation taking the form

                                                                Wi,k = (1 – λi)PSi,k + λiνiCSi,k (4)

where Wi,k  is the welfare in state i under simulation scenario k, PS is our measure of producer surplus, 
CS is our proxy measure for consumer surplus, νi is a scaling measure that converts our proxy measure 
of consumer surplus to true consumer surplus for state i, and λi ∈ [0,1] is state i’s political preference for 
consumers or producers.

With reliable estimates of νi  and λi, we would expect for any two scenarios, k and k', if Wi,k > Wi,k' then 
state i would rationalize a political decision to support outcomes that would bring about the k-scenario 
and undermine efforts that could manifest a k'-scenario. If λNC = 1, for instance, then the welfare measure 
of North Carolina would only consider consumer surplus. North Carolinians would support any 
inclinations by New Jersey, Maryland, or Virginia to defect from PJM’s energy market and would raise 
issue with that same defection choice originating from Pennsylvania or Illinois.

9 Technically, our simulations also show that Illinois is unambiguously better off under a Pennsylvania defection, but the changes in 
producers surplus and consumer wholesale costs are 0.06% and –0.03%, respectively.
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We could also imagine a state including some climate goals in their welfare function such as setting 
a ceiling on allowable state-created CO2 emissions. This would bring into consideration the emissions 
results from Table 9. Average cost to serve load after a state defection. A revised state welfare function 
might include a carbon constraint

                                            Wi,k = (1 – λi)PSi,k + λiνiCSi,k            s.t. EMi,k ≤ γi  (5)

Where like terms carry the same definitions as in Equation 4, EMi,k is the annual CO2 emissions of state i 
under simulation scenario k, and γi is a state-set maximum quantity of emissions.

DISCUSSION

Our analysis suggests a general tradeoff between producer and consumer welfare in other states if an 
individual state were to exit the PJM wholesale electricity market. How this would be valued by the 
remaining states would depend on the state’s relative weighting of producer and consumer welfare (i.e., the 
from Equations [4] and [5]). These spillover effects may diminish the value of other states staying in the 
market, giving them pause to consider their own choice on defection. We see from Tables 11 and 12 that a 
New Jersey defection reduces producer surplus and increases consumer surplus in Maryland. Depending 
on Maryland’s preferences toward producers and consumers, New Jersey’s defection might decrease 
Maryland’s overall welfare. If the decrease were large enough and if Maryland finds defection attractive 
enough, it might trigger Maryland’s own exit. With both New Jersey and Maryland out, and if Virginia 
comes to a similar conclusion after its own calculations, then we might see a Virginia defection follow.

A full modeling of the counterfactual scenario to understand the welfare implications to the defecting 
state would allow future iterations of this research to include state defection as an endogenous choice. As 
hinted previously, we could foresee an investigation into the fragility of these organized markets. There 
may be certain conditions that compel one state to leave, creating a cascade of follow-on state defections 
as the whole consortium unwinds. Understanding the landscape that could bring about such a “collapse” 
would be valuable to state and federal regulators alike.

We note that our research does not address defections from capacity markets10 or a total defection of 
both energy and capacity markets, but simulating these wholesale energy scenarios can help us better 
understand the spillover effects of exit shocks. Finally, our analysis does not value benefits of shared 
investment in transmission, nor does it consider any effects on system’s reliability or resiliency. Building 
a model that considers these factors would lead to more accurate state welfare calculations.

CONCLUSION

This paper investigates the welfare effects on states that remain in an RTO following a state defection 
from the wholesale energy market. While reports have investigated the effects of a state defection from 
the PJM capacity market, our efforts give a fuller picture of the complexity of RTO coalitions and the 
potential instability that can unwind the collective. We find, generally, that if a net-importing state defects 
from the wholesale energy market, the remaining states’ producers are worse off and the remaining states’ 
consumers are better off. The opposite effect takes hold if the defecting state is a net exporter. The overall 
welfare ramifications depend on how a state values producer surplus relative to consumer surplus.

 

10 Capacity market defection scenarios have already been explored in two independent market monitor reports (Monitoring Analytics 
2020a, 2020b).
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APPENDIX A: DATA

We chose to simulate PJM using 2019 data, which provided the right balance of accurate generator data 
and timely policy inferences. Our research was complicated by the unusual geographic relationship of 
PJM between states and transmission zones. As should be expected with a coalition that started as three 
utilities in 1927 and grew to become the largest RTO in the Western Hemisphere, the growth of the 
organization did not cut specifically along state lines. The expansion of PJM, rather, took step changes 
with the integration of existing transmission systems. The PJM transmission zones of today are shown in 
Figure 3. PJM transmission zones (PJM 2021a) of the main text. 

Figure 3. PJM transmission zones (PJM 2021a) clearly shows many transmission zones spanning one or 
more states, requiring us to apply assumptions as we simulated the exit of different states from the RTO. 
But first, we needed to create a model of PJM that accurately captures the pricing variability over the 
course of 2019.

To initialize our model, we gathered detailed data on the demand for electricity in PJM, the set of 
generators deployed in PJM, fuel costs associated with these generators, renewables generation in PJM’s 
footprint, energy storage assets, transmission constraints present between PJM zones, imports/exports 
between PJM and external grid systems, and imports/exports between states within PJM.

A.1 Demand for Electricity in PJM
We pull hourly metered load data from PJM Data Miner 2 for the 2019 calendar year. The data provides 
hourly load across 29 different “load areas.” These load areas needed to be coerced into nine zone areas 
for which we had transmission constraint data (see Section A.6, Transmission Constraints Between 
Zones). The crosswalk between load areas and zone areas was done by hand. Demand was aggregated to 
these nine zone areas based on the corresponding load area assignment shown in Table A1.

Table A1. Load area and the corresponding zone area

Load Area Name Zone Area Renewable Area

AECO Atlantic Electric EMAC MIDATL

AEPAPT American Electric Power West WEST

AEPIMP American Electric Power West WEST

AEPKPT American Electric Power West WEST

AEPOPT American Electric Power West WEST

AP Allegheny Power Systems APS MIDATL

BC Baltimore Gas & Electric SMAC MIDATL

CE Commonwealth Edison COMD WEST

DAY Dayton Power & Light West WEST

DEOK Duke Energy Ohio and Kentucky West WEST

DOM Dominion Dominion SOUTH

DPLCO Delmarva Power & Light EMAC MIDATL

DUQ Duquesne Light Co West WEST

EASTON Delmarva Power & Light EMAC MIDATL
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Load Area Name Zone Area Renewable Area

EKPC East Kentucky Power Cooperative West SOUTH

JC Jersey Central EMAC MIDATL

ME MetEd WMAC MIDATL

OE American Transmission Systems ATSI WEST

OVEC Ohio Valley Electric Corporation West WEST

PAPWR American Transmission Systems ATSI WEST

PE PECO Energy EMAC MIDATL

PEPCO Potomac Electric Power Company SMAC MIDATL

PLCO PPL Electric Utilities WMAC MIDATL

PN PennElec PENE MIDATL

PS Public Service Electric and Gas EMAC MIDATL

RECO Rockland Electric EMAC MIDATL

SMECO Potomac Electric Power Company SMAC MIDATL

UGI PPL Electric Utilities WMAC MIDATL

VMEU Atlantic Electric EMAC MIDATL

Sources: PJM (2021a) and PJM (2021b) 

Because our counterfactuals include considering the defection of a single state from the PJM consortium, 
we needed to understand hourly demand at the state level, noting that states sometimes contain multiple 
zone areas and that some zone areas span multiple states (see Figure 3. PJM transmission zones (PJM 
2021a)). We assign by hand each of the 29 different load areas with readily available demand data to the 
county-state pairs that those load areas serve. Then, we assign weighted percentages of a particular load 
area to a particular state based on 2019 Census estimates of county populations. If, for instance, a PJM 
load area served two counties, one county in State A and one county in State B, we would split the hourly 
demand in that load area according to the population of each of the two counties. We document these 
population splits in Table A4. Nameplate capacity of generator-fuel types in PJM. 

Table A2. Population percentages across PJM load areas

Load Area Zone Name Zone Area State Percent Split  
by Population

AECO Atlantic Electric EMAC NJ 100%

AEPAPT American Electric Power West TN 10.63%

AEPAPT American Electric Power West VA 48.33%

AEPAPT American Electric Power West WV 41.03%

AEPIMP American Electric Power West IN 78.33%

AEPIMP American Electric Power West MI 21.67%

AEPKPT American Electric Power West KY 100%

AEPOPT American Electric Power West OH 100%
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Load Area Zone Name Zone Area State Percent Split  
by Population

AP Allegheny Power Systems APS MD 16.01%

AP Allegheny Power Systems APS PA 43.45%

AP Allegheny Power Systems APS VA 9.70%

AP Allegheny Power Systems APS WV 30.84%

BC Baltimore Gas & Electric SMAC MD 100%

CE Commonwealth Edison COMD IL 100%

DAY Dayton Power & Light West OH 100%

DEOK Duke Energy Ohio and Kentucky West KY 22.19%

DEOK Duke Energy Ohio and Kentucky West OH 77.81%

DOM Dominion Dominion NC 3.48%

DOM Dominion Dominion VA 96.52%

DPLCO Delmarva Power & Light EMAC DE 65.77%

DPLCO Delmarva Power & Light EMAC MD 31.20%

DPLCO Delmarva Power & Light EMAC VA 3.03%

DUQ Duquesne Light Co West PA 100%

EASTON Delmarva Power & Light EMAC MD 100%

EKPC East Kentucky Power Cooperative WMAC KY 100%

JC Jersey Central EMAC NJ 100%

ME MetEd WMAC PA 100%

OE American Transmission Systems ATSI OH 100%

OVEC Ohio Valley Electric Corporation West OH 100%

PAPWR American Transmission Systems ATSI PA 100%

PE PECO Energy EMAC PA 100%

PEPCO Potomac Electric Power Company SMAC DC 33.41%

PEPCO Potomac Electric Power Company SMAC MD 66.59%

PLCO PPL Electric Utilities WMAC PA 100%

PN PennElec PENE PA 100%

PS Public Service Electric and Gas EMAC NJ 100%

RECO Rockland Electric EMAC NJ 100%

SMECO Potomac Electric Power Company SMAC MD 100%

UGI PPL Electric Utilities WMAC PA 100%

VMEU Atlantic Electric EMAC NJ 100%

Sources: US Census (2019) and PJM (2021a)
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A.2 Generators in PJM
A.2.1 eGRID 2019 Data
We employ the US Environmental Protection Agency’s (EPA’s) Emissions & Generation Resource 
Integrated Database (eGRID) from 2019, merging data at the unit, generator and plant level (EPA 2019). 
We keep generators with the balancing authority code of “PJM” and drop all others. Generators are 
filtered further to keep only those reported as “operating—in service” at the end of 2018. Our model does 
not account for any generator entries or exits in 2019 and so the total fleet of PJM generators comes to 
3,211 units with a nameplate capacity of 213.6 GW. 

We aggregate generators by coded prime mover and fuel type to create 23 different generator fuel types as 
shown in Table A3. We break out the amount of nameplate capacity of each generator fuel type in Table A4.

Table A3. Generator-fuel types and their descriptions

Type Description

Battery Storage Storage using battery technology

Coal CT Combustion turbine burning coal

Coal steam Bottoming plant burning coal

Gas CC Combined cycle plant burning non-natural gas

Gas CT Combustion turbine burning non-natural gas

Gas IC Internal combustion engine burning non-natural gas

Gas steam Bottoming cycle plant burning non-natural gas

Hydro Hydropower

NG CC Combined cycle plant burning natural gas

NG CT Combustion turbine burning natural gas

NG FC Fuel cell burning natural gas

NG IC Internal combustion engine burning natural gas

NG steam Bottoming cycle plant burning natural gas

Nuclear Nuclear power

Oil CC Combined cycle plant burning petroleum products

Oil CT Combustion turning burning petroleum products

Oil IC Internal combustion engine burning petroleum products

Oil steam Bottoming cycle plant burning petroleum products

Pumped storage Storage using the potential energy of dammed water
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Type Description

Solar Solar photovoltaic

Solid steam Bottoming cycle plant burning solid fuel (non-coal)

Wind Wind turbine

Other No information to categorize

Sources: EPA (2019) 

Table A4. Nameplate capacity of generator-fuel types in PJM

Type
Nameplate Capacity

MW Percent of Total

Battery storage  321.9 0.15%

Coal CT 24.0 0.01%

Coal steam 53,470.8 25.03%

Gas CC 118.5 0.06%

Gas CT 147.7 0.07%

Gas IC 449.4 0.21%

Gas steam 485.9 0.23%

Hydro 3,281.1 1.54%

NG CC 54,908.4 25.70%

NG CT 30,021.4 14.05%

NG FC 37.5 0.02%

NG IC 385.5 0.18%

NG steam 9,670.8 4.53%

Nuclear 34,466.6 16.13%

Oil CC 180.0 0.08%

Oil CT 3,545.6 1.66%

Oil IC 422.0 0.20%

Oil steam 2,822.8 1.32%

Pumped storage 5,103.3 2.39%

Solar 3,315.9 1.55%

Solid steam 1,220.9 0.57%

Wind 9,215.5 4.31%

Other 17.2 0.01%

Sources: EPA (2019) 
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The data show PJM capacity in 2019 is predominantly natural gas–fired combine cycle plants, coal-fired 
steam plants, nuclear plants, and natural gas–fired combustion turbine plants. These assets account for 
80.92% of the 213.6 GW of nameplate capacity in PJM. Renewable assets—those of solar photovoltaics, 
wind turbines, and hydropower plants—represent only 7.4% of PJM capacity. The “Other” category 
comprises slightly less than 0.01%, and while we make some assumptions about the characteristics of this 
type of generator, we claim these assumptions have little effect on the outcomes of our simulations.

In addition to capacity, our eGRID 2019 data also offer details on generator location (both the assigned 
state and the geographic coordinates) and, for conventional assets, generator heat rate and generator 
emissions per fuel input for SO2 (lb/MMBtu), NOx (lb/MMBtu), and CO2 (ton/MMBtu). We do not 
have data on part load heat rates or part load emissions intensities and instead assume that part load 
performance is identical to full load across these dimensions.

While there are 3,211 generators in PJM, the EMST treats renewables (solar, wind, and hydro) as must-
take assets and models storage assets separately, leaving 2,069 conventional generators. To aid with 
determining hourly merit order, the EMST incorporates many characteristics of generation including 
ramp rate, spinning reserve (up and down), nonspinning reserve, startup heat input, startup costs, 
minimum uptime and downtime, no load heat input, and fast start capability. A full description of 
these assumptions applied to conventional generating assets can be found in the online supplemental 
information.

A.2.2 Form EIA-860 2019 Data
We merge our eGRID dataset with 2019 data from Form EIA-860. Data are connected through the Office 
of Regulatory Information Systems (ORIS) Plant Code, which is managed by the Department of Energy.

Form EIA-860 contained information on minimum load of these generators, allowing the EMST to 
represent the capabilities of the PJM fleet more accurately over the course of the year.

A.2.3 Matching Generators to Transmission Zone Areas
Generators were matched to one of nine zone areas using information such as state, county, and 
transmission/distribution system owner, data all available in the “2. Plant” file of Form EIA-860. 
When there was still ambiguity over zone area, the latitude and longitude of the generator was used in 
conjunction with the map of Figure 3. PJM transmission zones (PJM 2021a) to make assignments. The 
final placement of each generator is included in the online supplemental information.

A.3 Fuel Costs for Nonrenewable Generators
Natural gas prices to the electricity industry in 2019 are published by EIA with monthly and state 
resolution (EIA 2021). Coal prices for 2019 are similarly provided by EIA and were set to the price of coal 
shipments to the electric power sector by month and by state (EIA 2020). Some states were missing data 
on natural gas or coal prices for either a month or the whole year. To populate this missing information, 
we calculated monthly average prices of natural gas and coal (weighted by quantity purchased) using 
Form EIA-923, page 5 (Fuel Receipts and Costs). Data were sparse here: the Form EIA-923 2019 data 
contain 28 plants in PJM that reported natural gas expenditures and 15 plants in PJM that reported coal 
expenditures.

Oil prices were exclusively formed using weighted averages from 2019 Form EIA-923 data for PJM units, 
of which there were only 23 plants. We note there were 359 oil generators in PJM in 2019 and while our 
sample is small, we claim that the geographically relevant and monthly resolution of our formed oil 
prices are preferable to a nationwide oil price without monthly variability.

Finally, as with Daraeepour et al. (2019), we use $2,770/kg (or $0.85/MMBtu) for the price of uranium.



Nicholas Institute for Energy, Environment & Sustainability, Duke University  |  31

A.4 Renewable Assets in PJM
To calculate hydro generation in PJM, we pull hourly generation by fuel type from PJM Data Miner 2 for 
the 2019 calendar year and then isolate “hydro” from the fuel type data provided. We have no further 
information to subset hydro generation across any geographic scales, but we do need hydro generation in 
each of our nine zone areas. To calculate an hourly hydro generation value for each transmission zone, 
we aggregate the total capacity of hydro assets assigned to each zone and then assume that the fraction 
of total capacity in a particular zone represents the fraction of total hydro generation that occurred 
systemwide in any given hour.

PJM Data Miner 2 provides 2019 hourly wind generation and hourly solar generation broken up by three 
areas: “MIDATL,” “SOUTH,” and “WEST.” We employ the crosswalk assignment of Table A1 and apply 
the aggregation method—described previously for hydro generation—to the wind fleet and the solar fleet 
in PJM, giving us hourly wind and solar production in each of our nine transmission zones.

A.5 Storage Assets in PJM
Storage asset data from eGRID 2019 is combined with 2019 Form EIA-860 Schedule 3.4 (Storage 
Data), matching by ORIS Plant Code. These data contain important simulation inputs like nameplate 
energy capacity (MWh), maximum charge rate (MW) and maximum discharge rate (MW). Additional 
assumptions applied storage assets in PJM to can be found in the online supplemental information.

A.6 Transmission Constraints Between Zones
A detailed design of PJM’s transmission system is not publicly available. We model an aggregated 
transmission system that represents only regional transmission limits. This aggregating is provided by 
the Environmental Protection Agency (EPA) as part of the documentation for the National Electric 
Energy Data System (NEEDS) (EPA 2013). Using NEEDS, our model divides PJM into nine regions as 
depicted in Figure 2.

Table A5. Total transmission capacity (MW) between NEEDS regions in PJM

EMAC SMAC WMAC Dominion
West 

Nameplate 
Capacity

APS PENE ATSi COMD

EMAC - 1,095 6,900 0 0 0 0 0 0

SMAC 1,095 - 2,000 2,812 30 2,200 0 0 0

WMAC 6,900 2,000 - 0 0 0 3,565 0 0

Dominion 0 2,812 0 - 3,800 8,000 0 0 0

West 0 0 0 3,800 - 6,300 0 9,700 4,000

APS 0 2,200 0 8,000 6,300 - 3,200 2,731 0

PENE 0 0 3,565 0 0 3,200 - 0 0

ATSi 0 0 0 0 9.700 2,731 0 - 0

COMD 0 0 0 0 4,000 0 0 0 -

Sources: EPA (2013) 

Table A5 presents the transmission capacity limits between NEEDS regions in PJM. These data were 
created in 2013 and our model, simulating 2019, needs to account for potential changes in transmission 
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capacity between our model’s zones. We modify the transmission capacity limits with the goal of 
reducing the gap between PJM’s observed day-ahead market prices and the simulated prices generated 
by EMST. These changes to the NEEDS-provided transmission limits are shown in Table A6. Our 
changes to these transmission limits are supported by data reported by PJM through the Data Miner 2 
repository (PJM 2021b). The largest change reflected in Table A6, for instance, is the total transmission 
capacity between the COMD and West regions. NEEDS reported a transmission limit of 4,000 MW (as 
seen in Table A5), yet PJM Data Miner 2 shows outflow of electricity from COMD to the rest of PJM 
has been as high as 8,500 MW in 2019. Since the only point of interconnection between COMD and the 
rest of PJM is through the West region, we increased the transmission limit between those two zones by 
the 4,000 MW indicated. Making these adjustments of transmission capacity between zones not only 
more realistically aligned with the true observed inter-region transmission but also served to bring our 
simulated prices in closer step with the reported prices from PJM.

Table A6. Increase in total transmission capacity limits between NEEDS regions in PJM 
relative to limits provided by EPA (2013)

EMAC SMAC WMAC Dominion
West 

Nameplate 
Capacity

APS PENE ATSi COMD

EMAC - 400 1,100 0 0 0 0 0 0

SMAC 400 - 1,000 900 0 800 0 0 0

WMAC 1,100 1,000 - 0 0 0 900 0 0

Dominion 0 900 0 - 0 0 0 0 0

West 0 0 0 0 - 0 0 0 4,500

APS 0 800 0 0 0 - 0 0 0

PENE 0 0 900 0 0 0 - 0 0

ATSi 0 0 0 0 0 0 0 - 0

COMD 0 0 0 0 4,500 0 0 0 -

Sources: EPA (2013) 

A.7 Imports and Exports out of PJM
PJM Data Miner 2 Actual/Schedule Summary Report provides hourly flows actual flows across tie-lines 
that connect PJM to external grid systems. Using hand matching, we apply a crosswalk of the 22 tie-lines 
to the zone area-state pairs as shown Table A7. This allows the EMST to consider total energy flows out of 
the nine transmission areas the model simulates.

Table A7. Tie-line and the corresponding zone area-state pair 

Tie-Line Balancing Authority Name Zone Area State

ALTE Alliant Energy Corporate Services, Inc - CA COMD IL

ALTW Alliant Energy Corporate Services, Inc - CA COMD IL

AMIL Ameren Transmission. Legal Name Ameren Services Company COMD IL

CIN Cinergy Corporation West OH
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Tie-Line Balancing Authority Name Zone Area State

CPLE Carolina Power & Light Company Dominion NC

CPLW Carolina Power & Light Company West VA

CWLP City Water Light & Power COMD IL

DUK Duke Energy Carolinas, LLC (Transmission) West VA

HUDS Hudson Transmission Project EMAC NJ

IPL Indianapolis Power & Light Company West OH

LAGN Louisiana Generation, LLC WMAC KY

LGEE E.ON U.S. Services Inc (Louisville Gas & Electric) WMAC KY

LIND Linden Variable Frequency Transformer EMAC NJ

MDU Montana-Dakota Utilities Co. COMD IL

MEC MidAmerican Energy Company COMD IL

MECS Michigan Electric Coordinated System ATSi OH

NEPT Neptune Regional Transmission System EMAC NJ

NIPS Northern Indiana Public Service Company COMD IL

NYIS New York Independent System Operator PENE PA

SIGE Vectren - Southern Indiana Gas & Electric Co. WMAC KY

TVA Tennessee Valley Authority ESO West VA

WEC Wisconsin Energy Corporation COMD IL

Sources: PJM (2021a) and PJM (2021b) 
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APPENDIX B: EMST PRICE PERFORMANCE

Since demand inputs into the EMST are the observed demands in PJM in 2019, evaluating the performance 
of our simulation hinges on a comparison of prices. The higher the correlation of simulated prices and 
actual prices, the more confident we can be in the results of our model during counterfactual scenarios.

To begin, we plot a time series of actual day-ahead, RTO-wide hourly prices as reported through PJM Data 
Miner 2 and our RTO-wide hourly price generated by the EMST. These curves are shown in Figure B1. 
Observed and EMST-simulated PJM-wide prices in 2019. We also show only the first 1,000 hours of 2019 
in Figure B2. Observed versus EMST prices in the first 1,000 hours of 2019.  

Figure B1. Observed and EMST-simulated PJM-wide prices in 2019
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Figure B2. Observed versus EMST prices in the first 1,000 hours of 2019

It should be immediately apparent that while our simulation seems to perform well in many periods 
of 2019 (for instance, in the first approximately 480 hours of the year), the simulation does not capture 
enormous price spikes. The highest price spike of the entire year occurred in hour 728, corresponding to 
7 a.m. Eastern Standard Time (EST) on Thursday January 31, 2019. This price spike and the high prices 
surrounding it were the result of an anomalous weather event that started to roll through Illinois on 
Tuesday morning and did not moderate until Friday, February 2, 2019. Temperatures were below 10°F 
RTO-wide and the actual morning low (not wind chill) temperatures on that Thursday morning dropped 
to –24°F in the Commonwealth Edison transmission area (PJM Operating Committee 2019a).11 Of the 
top 33 hours of highest prices PJM faced in the 2019 calendar year, 20 of them occurred during the 
period spanning Wednesday January 30 and Thursday January 31. Within the 48-hour period described 
here, 32 of those hours were part of the top 100 prices of 2019. PJM explains these price spikes as being 
caused by a significant increase in load as the cold air mass moved through the system and forced 
outages reached as high as 10.6% of total PJM capacity (PJM Operating Committee 2019a).12

11 Commonwealth Edison is represented as “COMD” in Figure 2. EMST transmission zones in PJM  and “ComEd” in Figure 3. PJM 
transmission zones (PJM 2021a).
12 The PJM Operating Committee (2019a) noted that the forced outages of the January 31, 2019, event of 10.6% of total PJM capacity was 
actually lower than the forced outage percentages of the 2014 polar vortex (22%) and 2018 winter peak (12.1%), pointing to the fact that 
prices could have been higher during this 2019 cold-weather event had outages been more in line with historical performance.



Nicholas Institute for Energy, Environment & Sustainability, Duke University  |  36

The second highest price spike as depicted in Figure B1 occurred between October 1 and October 2, 2019. 
Here, an unforeseen heat wave increased demand and forced PJM to engage in emergency procedures, 
including the first time demand response resources were tapped in over five years (PJM Operating 
Committee 2019b). The impact was less persistent compared to the January cold snap, but eight hours 
during this heat wave were part of the 100 highest prices in PJM.

EMST did capture an artifact of these events through the demand that the system experiences. We see in 
Figure B2. Observed versus EMST prices in the first 1,000 hours of 2019 that prices predicted by EMST 
do spike under the load spike that accompanied the winter event of late January. Yet, while EMST does 
capture the demand-side components of any exogeneous event, the model does not simulate unplanned 
outages (caused by weather or some other factor) and so cannot predict supply side shocks.

We drop the 48 hours surrounding the January winter event and the 48 hours surrounding the October 
heat wave and then calculate the descriptive statistics comparing actual prices to simulated prices. These 
results are shown in Table B1.

Table B1. Descriptive statistics of 2019 prices without the January and October weather events

Time 
Series Obs Mean, 

$/MWh

Std. 
Deviation, 

$/MWh

Median, 
$/MWh

Min., 
$/MWh

Max., 
$/MWh Skew Kurtosis

Observed 8,664 25.68 8.14 24.31 8.8 92.79 1.71 6.37

EMST 8,664 26.34 4.77 26.03 14.23 53.24 0.79 1.36

After dropping these 96 hours of exogeneous events, we see that EMST continues to be a good predictor 
of price levels but does a better job of representing actual price variation, skew and kurtosis (see Table 1 
in the main text for a comparison).

A correlation analysis after dropping these weather shocks was also employed, using the Pearson’s 
product-moment correlation, Spearman’s rank correlation coefficient, and Kendall’s rank correlation 
coefficient. Table B2 shows a decrease in correlation when we omit the weather event hours. This is 
likely because EMST successfully captures the demand side shock: the simulation predicts increasing 
prices, which matches trends in real prices.13 Dropping these hours, then, omits observations with high 
correlation and reduces the reported values seen in Table B2.

Table B2. Correlation between actual and simulated prices with and without weather events

Time Series Obs.
Pearson’s 

Product-Moment 
Correlation

Spearman’s Kendall’s 

Full year 8,760 0.6595771 0.6668497 0.482096

Drop weather-related 
96 hours 8,664 0.649502 0.6613582 0.476906

We also confirm no cross-correlation with lagged factors between EMST-generated prices and real prices. 
Figure B3 shows the highest correlation between actual and simulated prices when there is zero lag.

13 The highest actual price in PJM occurs at 7 a.m. EST on January 31, 2019. During that same hour, EMST predicts the second-highest 
price of the year. The scale, though, is dramatically different. Actual prices were reported as $160.35/MWh during this hour, while 
EMST calculated prices would clear at $54.63/MWh. Some of this difference could most certainly be explained by the supply-side shock 
experienced by PJM that our simulation does not capture.
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Figure B3. Autocorrelation function analysis for actual and simulated prices

We argue there are two primary factors that create discrepancies between EMST-created prices and 
actual prices. First, as discussed previously, EMST does not account for supply-side shocks that can 
contribute to higher observed price spikes. Second, EMST considers nine transmission zones because 
of limitations on available transmission data, wheras PJM sets locational marginal pricing across more 
than 5,700 nodes (PJM 2021b). Congestion-related events are dampened by the coarser grid that EMST 
models, providing another pathway through which prices are artificially suppressed compared to 
observed values.

Despite the shortcomings of EMST in predicting actual prices, it seems these issues are only prevalent 
when some shock is impacting the grid, be it a weather event or other issue that leads to unplanned grid 
congestion and/or forced outages. That the model does not capture these effects speaks to the quality of 
the simulation: EMST is not creating artifacts in its data-generating process and any divergence between 
simulated prices and observed prices is likely the result of an exogeneous shock.

We conclude that EMST provides a reliable avenue through which to predict profits to generating assets, 
the average cost to serve load, and the emissions intensity of the dispatched system for both the PJM base 
case and instances where a state defects from the consortium.
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