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What is T-AGG? 
The Technical Working Group on Agricultural Greenhouse Gases (T-AGG) began work in 
November 2009 to assemble the scientific and analytical foundation to support implementation of high-
quality agricultural greenhouse gas (GHG) mitigation activities. Mitigation activities that increase carbon 
storage in soil or reduce methane and nitrous oxide emissions could be an important part of U.S. and 
global climate change strategies. Despite the significant potential for GHG mitigation within agriculture, 
only a very few high-quality and widely approved methodologies for quantifying agricultural GHG 
benefits have been developed for various mitigation programs and markets. Much of the focus to date has 
been around forests on agricultural lands and manure management, rather than on production agriculture 
or grazing lands where we focus our attention. However, there are now a number of new agricultural 
protocols under development. 

T-AGG is coordinated by a team at the Nicholas Institute for Environmental Policy Solutions at Duke 
University with partners in the Nicholas School of the Environment at Duke and at Kansas State 
University, and regularly engages the expertise of a science advisory committee and cross-organizational 
advisory board (details below). The work was made possible by a grant from the David and Lucile 
Packard Foundation.  

The project is producing a series of reports which survey and prioritize agricultural mitigation 
opportunities in the U.S. and abroad. The purpose is to provide a roadmap for protocol and program 
development, and provide in-depth assessments of the most promising approaches. Experts and scientists 
are providing guidance throughout the process, through the advisory groups, experts meetings, and 
individual outreach. We will also involve the agricultural community in order to gain their feedback and 
guidance on the approaches assessed in our reports. We hope these reports will be of use to private or 
voluntary markets and registries as well as regulatory agencies and corporate decision makers that may 
oversee similar programs or the development of regulatory carbon markets. UWe intend for these reports to 
provide the fundamental information necessary for the development or review of protocols designed for 
agricultural GHG mitigation projects or for broader programs that wish to address GHG mitigation.U  
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Project Director – Lydia Olander, PhD, Director of Ecosystem Services Program at the Nicholas Institute, 
Research Scientist, Duke University 
Research Director – Alison Eagle, PhD, Research Scientist, Nicholas Institute, Duke University 
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Research Advisor – Rob Jackson, PhD, Chair of Global Environmental Change at the Nicholas School and 
Professor in the Biology Department, Duke University 
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International Advisor – Peter McCornick, PhD, Director of Water Policy, Nicholas Institute, Duke University 
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0BSummary 
This paper provides an overview of how biogeochemical process models can be used to quantify 
greenhouse gases (GHG) in agricultural systems for use in developing GHG mitigation programs or 
protocols. Federal and state agencies, voluntary carbon market registries, and companies are all looking 
for ways to assess mitigation opportunities in agriculture and to track outcomes of various management 
options.  

These process models may provide the most effective way of quantifying GHG impacts of agricultural 
management for a large-scale program, company, or market. Robust models have been developed and 
tested in the U.S. over the last few decades. Further development and improvement of these models and 
relevant research continue to be supported by the U.S. Department of Agriculture (USDA) and National 
Science Foundation (NSF). The models have strong coverage of all commodity crops but may be 
somewhat limited in their coverage for smaller-scale or specialty crops and more complex livestock 
systems due to a lack of research or experimental data with which to properly validate and calibrate the 
models. It has been over a decade since the last side-by-side comparison of the main biogeochemical 
models. It would be of value to update this comparison to allow better understanding of how structural 
error and other critical issues vary across the main models. For all models, development of a national 
network of long-term sampling sites would help to improve our understanding of the background changes 
in GHGs driven by climate shifts and improve the accuracy of model predictions.  

If models are to be used for development of agricultural GHG programs or protocols, they will need to be 
applied in a standardized way, either at a regional scale to develop emissions factors for emissions 
calculations used in protocols, or at a farm scale to directly quantify net GHGs using a standardized user 
interface to collect data and allow for consistent model use. There are tradeoffs to be considered when 
selecting between regional and farm-scale applications of models. Regional applications may be best 
when there are less research and data available for the practices of interest or where critical site-level 
verification would be too complex or costly. Farm-level applications increase flexibility of management 
combinations and incorporation of farmer variability, but require additional farm-level data. To maintain 
accuracy at this finer scale, programs will need clear alignment of definitions of management practices 
and guidance on verification, which may increase complexity and costs.  

1BIntroduction 
Numerous decision makers are looking toward the development of performance-based metrics for net 
GHG impacts of various agricultural practices in the U.S. and abroad. These include voluntary GHG 
offset registries, corporate and government supply-chain initiatives, international organizations (e.g., the 
Food and Agricultural Organization [FAO] of the United Nations), federal agencies (e.g., U.S. 
Department of Agriculture [USDA] and Environmental Protection Agency [EPA]) that are developing 
incentive and voluntary program requirements, and state and federal legislators who are considering the 
role of agriculture in various climate change, biofuels, and farm policies.  

Agricultural lands (cropland, managed grassland, agroforestry, and bioenergy crops) cover 40%–50% of 
the Earth’s land surface (IPCC 2007a) and account for 10%–12% of GHG emissions currently attributable 
to human activity. This is a conservative estimate that does not include the fuel use, transportation, 
buildings, and deforestation associated with agriculture. Agriculture now accounts for around 50% of 
human contributed methane (3.3 Gt CO2e/yr)0F

1, and 60% of human-contributed nitrous oxide (2.8 Gt 
CO2e/yr), (U.S. EPA 2006a; U.S. EPA 2006b). Many options exist for GHG mitigation in agriculture, 
including improved crop and grazing land management (e.g., nutrient use; tillage, rotation, and residue 
use; water and drainage), land-use changes (e.g., set-aside lands, forested buffers, agroforestry), and 

                                                      
1 The term ton (abbreviated t) in this report refers to the metric ton (1 ton [or tonne] = 1,000 kg = 2,204.62 lbs). Hence, the 
abbreviations Mt and Gt refer to the megaton (1 million metric tons) and gigaton (1 billion metric tons), respectively. 
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improved livestock management (e.g., alternative feeds, selecting for feed efficiency, manure 
management). Shifts in land management can increase sequestration of carbon in soils and plants and 
reduce emissions of nitrous oxide (N2O) and methane (CH4). Sequestration of carbon in soils (enhancing 
sinks) provides almost 90% of the global potential for agricultural GHG mitigation.  

GHG quantification is a critical step in protocols or programs that aim to track project performance. 
Models can be an effective way of quantifying GHG emission sources and sinks that are influenced by 
variable biological processes, dispersed across the landscape, and occur across mixed crop-livestock 
systems. Whatever quantification approach is used will need to be set within the context of the program 
objectives and within a comprehensive accounting approach that estimates uncertainty, clarifies project 
boundaries, and baseline conditions, and for carbon market approaches would include additionality, 
permanence, and leakage as well.1F

2 A number of these accounting issues such as specific boundaries and 
selected baseline approach, will need to be integrated with the quantification approach. Either the 
quantification tool or system will need to be adjusted to include the program-specific baseline and 
boundary requirements, or the protocol or guidance will need to explain how to make necessary 
adjustments for applying the tool.  

While we have a rough but relatively clear picture as to where some of the biggest opportunities lie for 
changing agricultural practices to achieve greater efficiencies and mitigate GHGs (Smith et al. 2008), we 
have less clarity on how to quantify such changes at local scales. The Intergovernmental Panel on Climate 
Change (IPCC) has developed metrics (default factors; IPCC Tier 1) for estimating GHG emissions or 
sequestration at the national level, but these methods become less accurate as spatial scale decreases from 
the regional level to local and site levels and they do not account for many of the management practices 
that are expected to reduce emissions (e.g., changing fertilizer type). Thus, these metrics are not sensitive 
to management changes that farmers would implement on the ground. So, why not simply use direct field 
measurement to assess changes at local and site-level scales? While this may be a viable option for some 
projects, it may not work well for many others. Soils and soil carbon are extremely variable, and detecting 
changes in soil carbon using field measurement alone can be expensive. We are often looking for 
relatively small changes against a large background pool of stored carbon. Another difficulty is tracking 
other, more potent GHGs, namely, nitrous oxide and methane, which are, per molecule, 298 and 25 times 
more potent than carbon dioxide, respectively.2F

3 Field measurements of nitrous oxide and methane flux 
with current chamber and tower methods are expensive and difficult to use, and thus are not ready for 
wide-scale implementation. Changes in the emissions of these gases can be the goal of the shift in 
agriculture practice or just an unfortunate consequence, but we want to ensure that reducing emissions of 
one GHG does not simply increase emissions of another. Thus net accounting of all three GHGs as they 
are impacted by management is necessary. Given these difficulties with field measurement, programs in 
Canada and the U.S. are looking to modeling-based approaches for quantification. There are two types of 
modeling approaches used: 

1. Empirical models. Regression analysis is used to extrapolate existing research and data to 
develop regionally explicit emissions factors. The regression equations produce GHG response 
curves for different management impacts. They are often specific to conditions at the ecozone or 
ecotype scale and thus are aggregated across sites. They can be developed without the use of a 
complex model and are relatively easy and transparent to use. They do not capture the effects of 

                                                      
2 Additionality criteria require that the project would not occur without the incentive offered by the program or market. 
Permanence criteria require that a project accounts for the risk that carbon sequestration is reversible. Leakage criteria require 
that the project accounts for emissions that shift outside the project boundary as a result of the project. Leakage results because 
demand for products (crop, timber) shifts to areas where the increase in emissions is not accounted for. 
3 See IPCC 2007b, Table 2.14, p. 212 at http://www.ipcc.ch/pdf/assessment-report/ar4/wg1/ar4-wg1-chapter2.pdf. For the sake of 
fungibility, most GHG programs use the SAR 100-yr values, according to which N2O and CH4 are 310 and 21 times more potent, 
respectively, than CO2. We use the latest IPCC values here. 

http://www.ipcc.ch/pdf/assessment-report/ar4/wg1/ar4-wg1-chapter2.pdf�


Using Biogeochemical Process Models to Quantify 
Greenhouse Gas Mitigation from Agricultural Management Projects 

7 

spatial and temporal variability on GHG dynamics at finer scales, and can be less flexible in 
handling variable management combinations. 

2. Process-based biogeochemical models. These models use mechanistic equations based on 
substantial long-term research to represent growth, nutrient, water, soil, and GHG dynamics. The 
models can be used in two distinct ways:  

a. At an ecozone or regional (pTier 2) scale, covering area with similar soils and climate, to 
produce reasonable, regionally sensitive emissions factors that can be used to develop a 
protocol or program accounting methodology. This approach can be relatively simple, 
transparent, and low-cost. However, using models at this scale may not reflect the 
spatial/temporal variability of GHG dynamics at a particular local site in the region.  

b. At a farm or project (pTier 3) scale which can be used for a quantification tool within a 
protocol or program accounting methodology. At this scale models can capture fine-
scale variability and dynamics but require significantly more site-level data inputs and 
detailed verification.  

This paper focuses on the use of process-based models, providing an overview of how these models work, 
and a detailed review of three well-developed and commonly used models in the U.S. We discuss the 
limitations and uncertainties inherent in these models and options for how they can be used in the 
development of GHG protocols and programs. We close with a couple of examples, describing a few 
existing protocols that have used these models. 

 

2BProcess-Based Biogeochemical Models 
Biogeochemical process models can simulate GHG dynamics under a range of changing environmental 
(soil physical properties, climate, topography, previous land management) and management (cropping, 
livestock, manure, grazing practices) variables while capturing temporal and spatial variability. These 
models are designed to work at the site-level scale, and are calibrated and tested using data from long-
term controlled experiments and field observations. They can be scaled up and averaged for use at larger 
scales—a process that can result in a reasonable balance of accuracy and conservativeness, if 
uncertainties in the estimates can be quantified. One of these models (CENTURY/DAYCENT) is 
currently used for the national GHG inventory for land use in the United States and Canada. Process-
based models can produce estimates of GHG change in response to changes in land use or management 
reasonably well when provided with significant environmental and agricultural data inputs and detailed 

Project-level application of IPCC tiers 
Given that many programs and quantification approaches under development are using the IPCC methods as a 
reference or default, we developed a similar typology to categorize approaches for quantifying greenhouse gases for 
mitigation projects or programs rather than for national inventories. To differentiate our typology, we use pTiers to 
indicate that we are referring to project- or program-scale approaches rather than national inventories. 

pTier 1: IPCC Tier 1 default factors are used for projects. These are national-scale and annual-resolution, and have 
limited land-use and management activity and coarse delineation of soils and animal populations. They have high 
uncertainty when applied at a project scale. 

pTier 2: Intermediate spatial and temporal scale input data, using process or empirical models to develop region-specific 
empirical equations with emissions factors which can and have been used for project-based accounting.  

pTier 3: Field-, site-, and farm-scale quantification, which can be accomplished with field sampling and measurement 
using carefully established sampling scheme to meet acceptable levels of certainty. Process-based biogeochemical 
models that use field-scale data and daily time steps can also be used to quantify net greenhouse gases at this scale.  



Using Biogeochemical Process Models to Quantify 
Greenhouse Gas Mitigation from Agricultural Management Projects 

8 

site knowledge.3F

4 If the necessary data are available, they can simulate a baseline scenario (what would 
have happened without a program incentive), the changes in GHGs due to a shift in management, and the 
interactions of multiple changes in crops and practices over a complex landscape. However, even in the 
United States and Canada, where there are extensive high-quality national and regional databases and 
numerous long-term agricultural research sites, the availability of experimental data across all types of 
cropping, soils and livestock systems can be a limiting factor in validating the model and quantifying the 
uncertainty of the outcomes for various practices and crops.  

The question of how the models handle multiple simultaneous practices that are typical of complex 
agricultural systems has been raised. Field measurement integrates everything that happens on a field, 
thus integrating across management changes. But what about models? Since the biogeochemical models 
are based on the processes and mechanisms that affect GHGs, they are designed to integrate multiple 
practices on the landscape. For example, shifting tillage results in changes in soil moisture and 
temperature as well as depth of aeration and soil organic matter placement in the soil profile; these 
changes to the physical and chemical environment are the changes that cascade through the model. If 
shifts in crop rotations occur at the same time, impacts of these shifts on total C and N in residue inputs, 
water use efficiency, and thus soil moisture interact with those from tillage and cascade through the 
model in tandem. The outcome is an integrated change in GHG fluxes.  

3BSummary of the Main Biogeochemical Process Models  
There are a number of process-based models that could be used to quantify GHG fluxes in 
agricultural systems. They vary somewhat in their approaches to modeling soil processes and in 
their calibration for different regions, management activities, and crops. Three of these models 
are well parameterized for use in the United States and are in wide use for quantifying 
agricultural GHGs: CENTURY/DAYCENT, DNDC, and EPIC/APEX. CENTURY/DAYCENT 
are two variations of the same model; CENTURY is a carbon cycle model, while DAYCENT 
operates at a finer time scale and can be used for other GHGs in addition to carbon. EPIC/APEX 
are also two variations of the same model, but here the difference is that APEX is the watershed 
version, allowing linked hydrological modeling. A fourth model, the NASA-CASA (Carnegie-
Ames-Stanford Approach) model, uses a different fundamental approach where net primary 
production and soil heterotrophic respiration drive carbon and nutrient cycling at regional to 
global scales.4 F

5 A fifth model described, RothC, is a soil carbon model and cannot produce net 
GHG impacts. It has been used more in Europe than the U.S. Table 1 provides a general 
comparison of these five models.  

                                                      
4 Crop rotations and crop management factors like seeding dates, harvesting dates, tillage type, fertilizer rates, fertilizer type and 
timing, residue rates and management, etc. 
5 Little information about applications of the CASA model to regional or project scale quantification of GHGs is available 
publically. For more information on the CASA model contact Chris Potter. http://geo.arc.nasa.gov/sge/casa/ 

http://geo.arc.nasa.gov/sge/casa/�
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Table 1. Description of the major biogeochemical process models capable of quantifying GHG fluxes for the 
agricultural sector in the U.S. 

Model Description Activities (1)/ GHGs(2) 
DAYCENT* DAYCENT simulates exchanges of carbon, nutrients, and trace 

gases among the atmosphere, soil, and plants. Flows of C and 
nutrients are controlled by the amount of C in the various pools, the N 
concentrations of the pools, abiotic temperature/soil water factors, 
and soil physical properties related to texture. Beginning in 2005, 
DAYCENT has been used to estimate N2O emissions from cropped 
and grazed soils for the U.S. National GHG Inventory. The model is 
also used to investigate how land use and climate change impact 
plant growth and soil C and N fluxes. It is an expansion of the 
CENTURY model. Uhttp://www.nrel.colostate.edu/projects/daycent/ 
index.htmlU 
Contact: Stephen Del Grosso 

1. Events and management practices such 
as fire, grazing, cultivation, residue 
management, and organic matter or 
fertilizer additions are modeled. A wide 
variety of crop, grass, and forest types are 
supported by the model. Primary model 
inputs are: soil texture, current and 
historical land use, and daily 
maximum/minimum temperature, and 
precipitation. 

2. CO2, N2O, NOx, NH3,emissions; CH4 
uptake; NO3 leached; crop/biomass yields. 

DNDC** DNDC is a family of models for predicting plant growth, soil C 
sequestration, trace gas emissions and nitrate leaching for cropland, 
pasture, forest, wetland, and livestock operation systems. The core of 
DNDC is a soil biogeochemistry model simulating thermodynamic 
and reaction kinetic processes of C, N, and water driven by the plant 
and microbial activities in the ecosystems. DNDC can be applied at 
various scales, ranging from site-specific applications to quantify 
within-field variability to county and regional scales to account for 
differences in environmental conditions and management practices. 
Soil organic C is divided into 4 compartments: litter, microbial 
biomass, active humus, and passive humus. The first 3 are further 
subdivided into pools that vary by their resistance to decomposition. 
As above, soil rate constants vary by abiotic factors of soil moisture, 
temperature, and texture. To relate C and N cycles, the output of 
soluble C drives denitrification. Carbon dynamics are computed on a 
daily time step, but N2O is based on an hourly time step. 
Uhttp://www.dndc.sr.unh.edu/U 
Contact: William Salas or Changsheng Li 

1. A relatively complete set of farming 
management practices such as crop 
rotation, tillage, residue management, 
fertilization, manure amendment, 
irrigation, flooding, grazing, etc., have 
been parameterized in DNDC to regulate 
their impacts on soil environmental factors 
(e.g., temperature, moisture, pH, redox 
potential, and substrate concentration 
gradients). 

2. N2O, NOx, CH4, and CO2. From cropping 
systems (including rice CH4), grazing 
systems and manure application/ 
management. Nitrate leaching loss (NO3). 
Soil carbon sequestration, crop 
development, and biomass yields. 

EPIC*** 
(Erosion 
Productivity 
Impact 
Calculator) 

EPIC (Environmental Policy Integrated Climate) is a comprehensive 
terrestrial ecosystem model capable of simulating many biophysical 
processes as influenced by climate, landscape, soil, and 
management conditions. Salient processes modeled include growth 
and yield of numerous crops as well as herbaceous and woody 
vegetation; water and wind erosion; and the cycling of water, heat, 
carbon, and nitrogen. The carbon algorithms in EPIC are based on 
concepts used in the CENTURY model applied to entire soil profiles. 
In addition to soil respiration, EPIC calculates carbon losses in 
eroded soil sediments, runoff water, and percolating waters; carbon 
lost during vegetation burning; and carbon emissions due to 
management and inputs (e.g., tillage, fertilization). EPIC also uses a 
process-based algorithm to estimate N2O flux during denitrification 
and N2O and NO fluxes during nitrification. 
Uhttp://epicapex.brc.tamus.edu/U 
Contact: César Izaurralde or Jimmy Williams 

1. A relatively complete set of farming 
management practices, including soil 
management, crop management, nitrogen 
management, land-use management, and 
livestock management. 

2. Soil nutrient (C and N) stocks, CO2 and N 
volatilization, and N2O flux from 
denitrification. 

APEX*** APEX is the watershed version of EPIC. It contains all of the 
algorithms in EPIC plus algorithms to quantify the hydrological 
balance at different spatial resolutions (farms to large watersheds) 
under different land covers and land uses. The fate of eroded carbon 
and nitrogen, as well as leached nitrate can be traced through the 
entire watershed.  
Uhttp://www.brc.tamus.edu/apex.aspx 
Uhttp://epicapex.brc.tamus.edu/U 
Contact: César Izaurralde or Jimmy Williams 

 

http://www.nrel.colostate.edu/projects/daycent/index.html�
http://www.nrel.colostate.edu/projects/daycent/index.html�
http://www.dndc.sr.unh.edu/�
http://epicapex.brc.tamus.edu/�
http://www.brc.tamus.edu/apex.aspx�
http://epicapex.brc.tamus.edu/�
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Model Description Activities (1)/ GHGs(2) 
NASA-
CASA 
(Carnegie-
Ames-
Stanford 
Approach) 
model 

The model simulates net primary production (NPP) and soil 
heterotrophic respiration (Rh) at regional to global scales. Calculation 
of monthly terrestrial NPP is based on the concept of light-use 
efficiency, modified by temperature and moisture stress scalars. Soil 
carbon cycling and Rh flux components of the CQuest model are 
based on a compartmental pool structure, with first-order equations 
to simulate loss of CO2 from decomposing plant residue and surface 
soil organic matter (SOM) pools. Model outputs include the response 
of net CO2 exchange and other major trace gases in terrestrial 
ecosystems to interannual climate variability in a transient simulation 
mode.  
CASA EXPRESS CQUEST 
Uhttp://geo.arc.nasa.gov/sge/casa/index.htmlU  
CQUEST online tool (slightly more limited in scope and 
customizability): Uhttp://sgeaims.arc.nasa.gov/website/cquest/ 
viewer.htmU 

A relatively complete set of farming 
management practices, including soil 
management, crop management, nitrogen 
management, land-use management, and 
livestock management (as it pertains to 
grazing). 

RothC  One of the very earliest soil carbon models. The compartments 
comprise labile plant residues, resistant plant materials, microbial 
biomass, and humified or inert organic soil organic carbon. The plant 
residues transform, through first-order kinetics, into microbial 
biomass or inert carbon, and in turn, a portion of these pools 
transform into CO2, microbial biomass, and humified soil organic 
carbon. The inert soil fraction is resistant to microbial attack. Like the 
other models, soil moisture, temperature, and clay content control 
soil organic matter decay. 
Uhttp://www.rothamsted.bbsrc.ac.uk/aen/carbon/rothc.htmU 

1. Soil management, crop management. 
2. Soil carbon. 
 

*Description edited by Steven Del Grosso 
**Description edited by William Salas 
***Description edited by César Izaurralde 
 
By working with model developers, we created the following detailed survey on three of these 
biogeochemical process models. The three we selected are those most widely used in the United States 
(and Canada) to quantify GHGs fluxes from agriculture and other land uses. We catalogue the GHGs, 
management practices, and crops included in these models, as well as the input data required to run them. 
We also share some insights into the accuracy and precision of these models. The three models covered 
here are DAYCENT, DNDC, and EPIC/APEX. Members of the modeling teams for each of these models 
contributed to this review. We acknowledge that the CASA and RothC models may also be of value for 
GHG quantification, but these have been less prominent for project- and program-level accounting to 
date, and members of their modeling teams were not available to contribute to our review. 

Each of these models can quantify soil carbon dynamics and on-site nitrous oxide (Table 2). For off-site 
nitrous oxide emissions, the models estimate nitrogen leaching and volatilization loss rates, which can 
then be combined with the IPCC Tier 1 emissions factor to determine indirect nitrous oxide (N2O) 
emissions from these sources. Only DNDC has fully modeled methane fluxes at this point, while EPIC is 
the only model that includes GHGs from upstream and offset energy and fuel use. Most of the models 
have relatively full coverage of common management practices, but a subset of these, such as those 
related to nitrous oxide, methane management, and biochar, need further testing and calibration (Table 3). 
Descriptions of these practices as well as information about regions and cropping systems where the 
practices are important, their mitigation potential, and possible impacts on soil quality, other GHGs, and 
ecosystem services can be found in the companion T-AGG paper “Assessing Greenhouse Gas Mitigation 
Opportunities and Implementation Options for Agricultural Land Management in the United States.” The 
models include a wide variety of crop types, which vary somewhat by model (Table 4). Because the 
models have historically been used for commodity crops, specialty crops are often missing. However, 
there has recently been a significant effort to expand the models to include specialty crops. The models 
require a wide variety of data inputs (Table 5). While it seems like a daunting list of data inputs required 
for these process models, many of them can be found or extrapolated from national databases in North 
America, and other data are already collected and available to farmers. These models are all available 
online, but require significant training to use. A number of these models are being used to develop user-

http://geo.arc.nasa.gov/sge/casa/index.html�
http://sgeaims.arc.nasa.gov/website/cquest/%0Bviewer.htm�
http://sgeaims.arc.nasa.gov/website/cquest/%0Bviewer.htm�
http://www.rothamsted.bbsrc.ac.uk/aen/carbon/rothc.htm�
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friendly and standardized decision support tools (Table 6), which may be the best way to incorporate 
them into protocols and program operations moving forward. While there are a wide range of decision 
support tools, the ones we describe in this paper are user-friendly interfaces for the full and complex 
biogeochemical process models.  

Table 2. Greenhouse gases measured in three of the biogeochemical process models that can quantify GHG 
emissions from land use. 

GHG Measured DAYCENT DNDC EPIC/APEX 

Electricity, fuel, and input 
energy 

No No Yes, calculator for field 
operations (tillage, seeding, 
fertilizer application, etc.) 

Soil carbon sequestration Yes (Tier 3) Yes (Tier 3) Yes (Tier 3) 

N2O* Yes (Tier 3): Leaky pipe 
approach** to N2O emissions 
– calculated on basis of % of 
N mineralization subject to soil 
environment conditions 

Yes (Tier 3): Soil Eh (measure 
of reducing conditions that 
drive production of N2O - 
common in waterlogged 
soils)and microbial population 
dynamics 

Yes (Tier 3): Based on 
electron flow, oxygen 
availability, and competitive 
inhibition among oxides of N. 

CH4 Uptake Only  Yes (Tier 3) In progress 

*On-site N2O emissions are included directly in the models. For off-site N2O, the models can estimate nitrogen lost through 
leaching and volatilization which can then be combined with the IPCC emissions factor to calculate off-site N2O emissions. 
**The controls on the production of nitric oxide and nitrous oxide demonstrate in "leaky pipe" model of Firestone and Davidson 
(1989). The concept of the model is that nitric oxide and nitrous oxide are the side products of nitrification and denitrification. 
Thus the production of these product depends on both the total of process (flow through the pipe) and the "leak" of nitric oxide 
and nitrous oxide (the size of the holes in the pipes). 

Table 3. Management activities included in three of the biogeochemical process models that can quantify 
GHG emissions from land use. 

Management Practice* DAYCENT DNDC EPIC/APEX 

Conventional to conservation till Yes Yes Yes 

Conventional to no-till Yes Yes Yes 

Conservation till to no-till Yes Yes Yes 

Switch from irrigated to dry land Yes Yes Yes 

Use winter cover crops  Yes Yes Yes 

Eliminate summer fallow  Yes Yes Yes 

Intensify cropping (more crops/year) Yes Yes Yes 

Switch annual crops (change 
rotations ) 

Yes Yes Yes 

Include perennial crops in annual 
crop rotations 

Yes Yes (new crops will need to 
be calibrated) 

Yes (new crops will need to 
be calibrated) 

Short rotation woody crops Yes Yes Yes 

Irrigation improvements (drip, 
supplemental, etc.) 

Yes - model simulates 
irrigation, but can't 
distinguish types 

Yes (DNDC distinguishes 
sprinkler, flood, and drip; 

manual or automatic based 
on water stress) 

Yes (different types; 
manual or automatic based 

on water stress) 

Agroforestry (windbreaks, buffers, 
etc.) 

Yes Yes (by 
compartmentalizing the 

fields) 

Yes - APEX 

Herbaceous buffers Possible but has not been 
tested 

Possible but has not been 
tested 

Yes - explicit in APEX 

Application of organic materials 
(esp. manure) 

Yes Yes Yes (beef, dairy, swine, 
poultry) 

Application of biochar Possible but has not been 
tested 

Possible but has not been 
tested 

Under development 

Reduce N application rate Yes Yes Yes 

Change fertilizer N source Yes (only distinguished 
NO3 from NH4) 

Yes (7 distinct chemical 
fertilizer types) 

Yes - single and compound 
fertilizers 
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Management Practice* DAYCENT DNDC EPIC/APEX 

Change fertilizer N timing Yes Yes Yes - flexible application 
based on n test or plant n 

stress 
Change fertilizer N placement No Yes (user prescribe depth, 

only limited testing) 
Yes - (broadcast, banding) 

Use nitrification inhibitors Yes (limited testing) Yes (limited testing) Not tested yet 

Improved manure application to 
soils management (N2O) 

Yes (amount and type) Yes (amount and type) Not tested yet 

Irrigation management for N2O Yes (only amount) Yes (only amount) Not tested yet 

Manage histosols to reduce GHG 
emissions 

No Yes (new application in CA, 
needs calibration) 

Not tested yet 

Drainage on croplands, N2O & CH4 Yes (CH4 not included) Yes EPIC/APEX can simulate 
drainage; no test of 

drainage and N2O and CH4 

Rice water management for CH4 No Yes No 

Improved grazing management, 
range 

Yes Yes Yes 

Improved grazing management, 
pasture 

Yes Yes Yes 

Fertilizing grazing lands Yes Yes Yes 

Irrigation management for grazing 
lands 

Yes Yes Yes 

Species composition on grazing 
lands 

Model represents 
vegetation mix, not species 

No - users would have to 
define special mix 

Yes (up to 10 species) 

Grazing land fire management Yes Yes Yes 

Rotational grazing Yes Yes (grass model requires 
calibration and testing of 
physiological response to 

grazing intensity) 

Yes (new grazing model in 
APEX) 

Manure management (lagoon, 
compost, etc.) 

No Yes (new Manure model 
with enteric fermentation 

requires more testing, 
continued development) 

Yes (in APEX) 

Transition to natural land (forests, 
native grasslands, wetlands) 

Yes Yes (wetland/forest DNDC) Yes (in APEX) - in 
development (have not 

done wetlands) 
* Inclusion of a management practice and variations on those activities (e.g., 7 chemical fertilizer types), means that the models 
include a process to estimate impacts of the practice, but does not guarantee that the science is fully developed. For example, 
biochar and fertilizer types are active areas of research with little scientific consensus on the basic process and outcomes of 
implementing the practice. 
 
Table 4. Crops included in three of the biogeochemical process models that can quantify GHG emissions 
from land use. 

DAYCENT DNDC EPIC/APEX 
CEREAL GRAINS 

Barley Barley Barley 
Corn Corn Corn 

Silage corn Silage corn Silage corn 
 Edible amaranth  

Millet Millet Pearl millet 
  Proso millet 

Oat Oat Oat 
 Paddy rice Rice 
 Rainfed rice  
 Dw rice  
 Upland rice  

Rye Rye Rye 
Sorghum Sorghum Sorghum hay 

  Grain sorghum 
  Durum wheat 

Spring wheat Spring wheat Spring wheat 
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DAYCENT DNDC EPIC/APEX 
Winter wheat Winter wheat Winter wheat 

VEGETABLE AND MELON 
 Artichoke  
  Asparagus 
 Beet  
 CA broccoli Broccoli 
 Brussels sprout Cabbage 
  Cantaloupe 
  Carrots 

Cassava Cassava Cassava 
  Cauliflower 
 Celery Celery 
  Cucumber 
  Eggplant 
  Green bean 
 Green onion  
  Honey dew melons 
  Leaf lettuce 
 Lettuce Lettuce 
  Lima bean 
 Onion Onions 
 Pepper Pepper 

Potato Potato Potato 
 Radish  
 Baby spinach Spinach 
  Sugarbeet 
  Sweet corn 
  Sweet potato 

Tomato Tomato Tomato 
 Vegetables  
  Watermelon 
  Yam 

LEGUMINOUS CROPS 
  Chick pea 

Beans Beans  
  Fava bean 
  Lentil 
  Lespedeza 
 Soybean Soybean 
  Peas 
  Cowpea 
  Field pea 

Austrian winter pea  Winter pea 
OILSEED CROPS 

  Canola-argentine 
  Canola-polish 
 Flax Flax 
 Palm  

Peanut Peanut Peanut 
Rapeseeds Rapeseeds  
Safflower Safflower  
Soybean   
Sunflower Sunflower Sunflower 

FRUIT AND NUTS 
Apple  Apple 

 Banana  
 Berries  

Citrus Citrus  
 Fruit trees  
  Coffee 

Grape Grape Grape 
 Wine grape - high vigor  
 Wine grape - low vigor  

Peach   
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DAYCENT DNDC EPIC/APEX 
Pear   

Pecan   
 Strawberry Strawberries 

BEVERAGE, SPICE, AND SUGAR CROPS 
  Coffee 
 Green tea  
 Hops  

Ratoon sugarcane Ratoon sugarcane  
Sugarcane Sugarcane Sugarcane 

OTHER CROPS 
Cotton Cotton Picker cotton 

  Stripper cotton 
 Nursery flowers  

Tobacco Tobacco Tobacco 
 Truck crops  
FORAGE CROPS, HERBACIOUS AND SHRUBLAND SPECIES 

Alfalfa Alfalfa Alfalfa 
Alpine grass  Altai wild rye 

Annual grasses  Annual ryegrass 
  Bahiagrass 
  Big bluestem 
  Bromegrass 
  Buckwheat 
  Buffalograss 
  Cheatgrass 
  Clover, alsike 
  Coastal bermuda 
  Cocklebur 
  Crested wheatgrass 

C3 grass   
C4 grass   
Clover  Red clover 

  Sweet clover 
Clover/grass mixture   
Grass clover pasture   

  Summer pasture 
  Winter pasture 
  Eastern gamagrass 

Fallow Fallow  
  Fescue 

Grassland Grassland  
  Giant foxtail 
  Gramagrass 
  Green foxtail 
  Johnson grass 
  Little blue stem 
  Weeping lovegrass 

Hairy vetch   
Legume hay Legume hay  
Miscanthus  Miscanthus 

Mixed cover crop Mixed cover crop  
Non legume hay Non legume hay  

  Northern wheatgrass 
  Orchard grass 

Perennial grass Perennial grass  
  Poa spp. 
  Range 
  Russian wild rye 
  Seabuck thorn 

Sedge Sedge  
  Sideoat grama 
 Shrub blueoak  
  Slender wheatgrass 
  Smooth brome 
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DAYCENT DNDC EPIC/APEX 
   

Switchgrass  Switchgrass 
  Timothy 

Tropical grass   
  Vel vetleaf 
  Western wheatgrass 

TREE PLANTATIONS AND FORESTS 
  Ash 
  Black locust 
  Mesquite 
  Oak 
  Pine 
  Poplar 
  Sweetgum 

Temperate mixed deciduous 
forest 

 Temperate deciduous forest 

Temperate coniferous forest  Temperate evergreen forest 
Topical evergreen forest  Tropical evergreen forest 
Tropical deciduous forest   

OTHER BIOMES 
 Wetland grass  

Mediterranean shrubland   
Savanna   

Shrubland   
 
Table 5. Data inputs required for three process-based biogeochemical models. 

  DAYCENT DNDC 
* = included in simplified model 

APEX (EPIC) 

Soil 

  
Texture class 

Yes (% sand and % 
clay) 

*Yes (texture or clay fraction - 
12 soil types: sand, loamy 
sand, sandy loam, silt loam, 
loam, sandy clay loam, silty 
clay loam, clay loam, sandy 
clay, silty clay, clay, and 
organic soil) 

Yes; user specifies % sand 
and % silt 

Depth of soil profile Yes Yes for shallow profile (<1 
meter) (new version with user 
specified soil layers, not yet 
extensively tested) 

Yes 

Bulk density Yes Yes (0-10 cm) Yes (bulk density is dynamic 
and is affected by erosion 
(surface), tillage, and soil 
organic matter) 

Soil Organic C No Yes (0-5 cm)* Yes 
pH Yes Yes* Yes, and electrical 

conductivity 
Clay content Yes Yes sand and silt content 

Clay by difference  
(as well as calcium 
carbonate) 

Drainage Yes – water-logged 
soils 

Yes – water-logged soils Yes, full hydrology 
competent 

 

Crop 

Crop type Yes Yes* Yes 
Crop rotation Yes Yes Yes - including intercropping 
Planting dates Yes – can estimate Yes Yes - can estimate 
Cover crop? Yes Yes Yes 
Harvest dates Yes – can estimate Yes Yes - can estimate 
Residue 
management (e.g., 
burned, removed, 
left, plowed in) 

Yes Yes (in terms of fraction of 
residue left in field)* 

Yes 

Perennial crops Yes Yes Yes 
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  DAYCENT DNDC 
* = included in simplified model 

APEX (EPIC) 

Tillage 
Tillage description Yes Yes (depth of each event) Yes - need implements 
Tillage dates Yes Yes Yes - can estimate 

 

Fertilizer 

Amounts  Yes Yes* Yes 
Application dates Yes Yes Yes - can estimate 
Method No Yes (surface and injection ) Yes (surface and 

subsurface)  
Type Nitrate vs. ammonium Yes (7 chemical types) Yes 
Stabilizer Nitrification inhibitors Yes (time release or 

nitrification inhibitor) 
no 

 

Manure 
input 

Type  Yes Yes (5 types farmyard, green, 
straw, liquid, compost) 

Yes beef, dairy, pork, swine 

Amount Yes Yes Yes 
C/N ratio Yes Yes Yes, carbon, organic N, 

mineral N, NH3 fraction 
 

Irrigation 

Amounts Yes Yes Yes 
Dates Yes Yes (or modeled based on 

crop demand) 
Yes 

Type (sprinkler, 
furrow, drip) 

no Yes Yes 

Water pH and N 
content if known 

Yes Yes Yes 

 

Climate 

Daily min/max temp Yes - but can get 
independently 

Yes - but can get 
independently 

Yes - but can get 
independently 

Precipitation Yes - but can get 
independently 

Yes - but can get 
independently 

Yes - but can get 
independently 

Solar radiation no Yes - but can get 
independently 

Yes - but can get 
independently 

Atmospheric N 
deposition 

Yes - but can get 
independently 

Yes - but can get 
independently 

Yes - but can get 
independently 

 

Table 6. User-friendly interfaces or decision support versions of the biogeochemical process models. 
Base Model Decision support tools Notes 

CENTURY/DA
YCENT 

COMET-VR 
Uhttp://www.cometvr.colostate.edu/U 
COMET 2.0 
Uhttp://www.comet2.colostate.edu/U 
COMET Farm 
 (Beta available March 2011) 

These tools are developed with support from USDA, NRCS. This 
tool is currently being updated into COMET-FARM, which is a 
whole farm/ranch greenhouse gas emission estimation tool that 
uses DAYCENT for estimating soil emissions and uptake of CO2 
and N2O (and other models for livestock and other on-farm 
emissions). 
References: Paustian et al., 2010; Paustian et al., 2009 

APEX/EPIC Nutrient Trading Tool 
Uhttp://ntt.tarleton.edu/nttwebars/U 
ARCGIS APEX 
 

This tool was developed with support from USDA NRCS. It tracks 
nitrogen impacts of agricultural practices on water quality, but can 
also but used to quantify GHG impacts. It is being linked to the 
DAYCENT model in current developments. 
A second decision support system for EPIC is under development 
by USDA and PNNL researchers with support from NASA. 

DNDC U.S. Cropland Greenhouse Gas Calculator 
Uhttp://www.dndc.sr.unh.edu/U 

ARCGIS version of the DNDC model for U.S. croplands. 

NASA/ 
CASA 

CASA EXPRESS CQUEST 
Uhttp://geo.arc.nasa.gov/sge/casa/ 
index.htmlU  
CQUEST online tool (slightly more limited in 
scope and customizability): 
Uhttp://sgeaims.arc.nasa.gov/website/ 
cquest/viewer.htmU 

Observational tool to assess climate and land management 
trends and impacts on the landscape. Does not specifically model 
scenarios; however the model is capable of being run with pre-
populated externally created scenario models. Especially 
effective in identifying current problems and sources of 
emissions. Tier 3 model using remote sensing with an easy-to-
use ArcGIS interface, and background calculations based on 
user-provided data, satellite imagery and remote sensing data, 
and IPCC baseline information. Scalable to the 1/4 acre, as well 
as region and nation. Useable world-wide. 

http://www.cometvr.colostate.edu/�
http://www.comet2.colostate.edu/�
http://ntt.tarleton.edu/nttwebars/�
http://www.dndc.sr.unh.edu/�
http://geo.arc.nasa.gov/sge/casa/%0Bindex.html�
http://geo.arc.nasa.gov/sge/casa/%0Bindex.html�
http://sgeaims.arc.nasa.gov/website/%0Bcquest/viewer.htm�
http://sgeaims.arc.nasa.gov/website/%0Bcquest/viewer.htm�
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The DAYCENT, DNDC and EPIC/APEX models have many similarities, and a few critical differences, 
as explained below: 

• All three models can be used at either a farm/site or an ecozone/regional level for quantifying 
CO2 and N2O emissions and C sequestration. 

• DNDC simulates soil redox potential and methane (CH4) emissions from saturated soils and CH4 
uptake; DAYCENT only models CH4 uptake in non-saturated soils but is working on an 
emissions model; and EPIC/APEX currently does neither but is working on incorporating both. 

• APEX places EPIC into a spatial context, where it can model hydrological flows using algorithms 
similar to those used in the SWAT model7 and thus estimate runoff as well as transport and 
deposition of soil sediment, nutrients, and pesticides. They are working on adding estimates of 
indirect (off-site) N2O emissions. The other two models can estimate nitrogen losses from 
leaching and volatilization, which can be used to calculate N2O losses using an IPCC emissions 
factor, but the models do not do this directly.  

• All three models cover common agricultural practices, but each has practices that are under 
development and not yet ready to run. 

• All models can manipulate quantity of irrigation, but DAYCENT does not currently allow 
different types of irrigation (flood, sprinkler, drip). DNDC and EPIC/APEX do include irrigation 
type. 

• All the models can control the amount of fertilizer. DAYCENT only includes nitrate versus 
ammonia fertilizers, while the other models have multiple types (~7). DAYCENT also does not 
have the ability to change method or placement of fertilization, but the other models do (e.g., 
surface versus injection). 

• Nitrification inhibitors are in DAYCENT and DNDC, but not yet in EPIC/APEX. 
• Nitrous oxide emissions from manure, irrigation, and other management can be predicted using 

DAYCENT, DNDC, and EPIC, but not yet with APEX, which uses empirical equations to predict 
denitrification. 

• DNDC is the only model that current includes CH4 emissions, thus it is the only one of the models 
that can look at water management in rice cultivation. 

• The models differ slightly in the inputs they require, but all of them can use estimates or national 
databases to fill in most variables where site-specific information is not available. The quality of 
these national data and estimates vary.  

• DNDC has a model for manure management, which includes intensive management systems with 
enteric fermentation. APEX includes a model for extensive grazing and confined area feeding. 
According to Gassman et al. (2010), up to 10 herds of groups of animals can be simulated with 
APEX, but only one herd can occupy a subarea at any given time. Livestock can rotate among 
subareas. Animals may be confined to a feeding area. Grazing can occur throughout the year or 
periodically according to limits. When no more grazing material is available, the owner can 
provide supplemental feeding. 

While many of these models include some aspects of livestock management, they often present only a 
partial assessment of the beef production chain; significant opportunity for emission reductions exists 
in the confined feeding stages (drylots and feedlots) of the cattle’s life cycle. In addition, 
quantification of CH4 and N2O emissions for livestock has complexity beyond that observed in crop 
management. The primary N2O sources on grazed lands (i.e., N2O from urine and dung patches) are 
spatially complex, making field measurement even more difficult. Further, the pasture-livestock 
interface needs to account for CH4 production from enteric fermentation.  

These models include water and fertilizer management of pasture lands, rotational grazing and fire 
management; some also include manure management. Other models are being developed for intensive 
animal feeding operation to predict GHG emissions from the entire operation, including land 
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application of manures (e.g., Manure DNDC; Comet v2 2.0; CometFARM). Another model which 
could add some missing details is called the Integrated Farm System Model (IFSM) (ROTZ et al. 
2011). IFSM is being developed by the USDA-ARS by Dr. Alan Rotz and colleagues.5F

6 The IFSM 
model is undergoing testing on recently added components that predict GHG emissions from the 
grazing animals as well as on-farm feed and manure sources. The model will include carbon 
sequestration in soils as well. In the interim, applying IPCC (2006) equations relating to grazing dry 
matter intake, enteric fermentation, and manure and N excretion rates, and then calculating 
subsequent emissions may be the best measurement methods to assess methane, carbon, and nitrous 
oxide fluxes from grazing systems.  

8BModel accuracy and limitations 
It is important to understand the potential limitations of these models. There are limits to the ability of 
these models to represent the ecological processes, which drive the GHG results. In some cases we do not 
have sufficient measured long-term data with which to test the models to ensure they are reasonably 
representing or predicting the impacts of the management practices for all locales. We need to be clear 
where the uncertainties lie in the use of these models if they are to be used to quantify GHG outcomes for 
developing programs and markets. Knowing the uncertainties 
can help programs apply model results in a conservative 
fashion, perhaps adjusting crediting based on accuracy and 
confidence in model outcomes. 

Accuracy of model results is related to model error and 
uncertainty. Sources of model error can be partitioned into 
two categories:  

1. errors due to uncertainty in model inputs  
2. errors due to model structure  

Model calibration is the process of parameterizing a model to 
the specific site or landscape application, incorporating 
detailed land-use and land-management history (for 
initializing soil C), soil maps, topography, daily or weekly 
climate data, initial soil carbon and nitrogen levels, among 
others. Errors from model input occur because model inputs 
are not precisely known. This uncertainty can be estimated 
by using sensitivity analysis such as a Monte Carlo approach, 
where thousands of possible scenarios are generated using random values varied across each input 
parameter to estimate this uncertainty. The set of modeled results is then analyzed statistically to generate 
the probability range and distribution of predictions. Environmental characteristics and crop and animal 
biophysical variables used in these models come primarily from national databases and can be provided 
as defaults in the models. National data on management and cropping practices are less robust, which can 
add significant uncertainty to model outcomes. As a result, a number of models are moving toward 
farmer-required inputs on management and cropping to run the models at farm level. If fine-scale (parcel-
level) data are available, like in the U.S., models can be run at farm/project scale. Where fine-scale data 
do not exist, such as in many developing countries, it may make sense to run models at coarser scales, 
which may average out some of the uncertainty. 

Errors related to model structure result from the fact that equations in the models are imperfect 
representations of the real-world processes that result in GHG emissions. Model structure is usually 
considered to include the equations (e.g., the relationship between soil water content and the 
                                                      
6 See http://ars-usda.gov/naa/pswmru. 

MODEL INPUTS  
Management input variables: cropping 
systems (crop type, rotation sequence, 
field size, yield data), farm operations 
(seeding, tillage, harvest, residue 
management, spraying, irrigation data), 
fertilizer and manure N content, source, 
rate, placement and timing data, etc. 
These can be gathered at a regional scale 
(observational datasets) or at the farm 
level. 

Environmental input variables: fine-
scale soil map data with soil properties 
(soil type and texture, organic carbon and 
nitrogen levels, soil profile data, pH, etc), 
topographical information, daily or weekly 
climate data (precipitation, temperature), 
hydrography, etc. Information can be 
found in national databases or gathered at 
the site level. 

http://ars-usda.gov/naa/pswmru�
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decomposition rate multiplier) and model parameters that represent livestock and crop characteristics 
(e.g., root to shoot ratio, crop light use efficiency). The errors in the model structure can be estimated by 
statistically quantifying the agreement between model outputs and field measurements. Mixed-linear 
effects models can be used to see how much model outputs deviate from observed values (Del Grosso et 
al. 2010; Ogle et al. 2007; Ogle et al. 2010). Model validation is a term used for this process of assessing 
how well a model performs relative to an independent dataset (monitoring/benchmark sites, or flux 
tower/airplane data) that is different from the long-term data used to calibrate the model. 

Sufficient field measurement for the desired range of practices, cropping systems, GHGs, and geographies 
is often a limiting factor in validating models and assessing the associated uncertainties. For example, we 
have little field data on specialty crops and how N fertilizer placement impacts N2O emissions for a 
number of regions and cropping systems, and we need more research on rotational grazing and biochar. In 
one of the T-AGG companion reports, we reviewed the research literature to assess the state of 
knowledge on the mitigation potential of a wide range of agricultural land management activities. Out of 
42 practices reviewed (Table 7),6F

7 26 seem to have positive mitigation potential. Eleven of these 26 are 
supported by significant research (more than 20 field or lab comparisons), 13 are backed by a moderate 
level of research, and two, while promising, have little research. The remaining 16 practices are either too 
uncertain, due to questions of full life-cycle impacts or little data, or they appear to have little or negative 
GHG impact. The models cannot assess the uncertainty for practices, crops, and regions that have critical 
research and data gaps. Luckily research is under way to fill many of these gaps, which will allow even 
broader application of the models. 

Another step in model use which can significantly impact accuracy is the initialization process through 
which models are calibrated to historic soil carbon levels and historic land-use and management practices. 
Most of the models described in this report have default soil carbon levels that have been validated 
against field data and research, and thus only require that land-use and land-management history be 
added. At a regional scale, aggregated data from farm agencies and USDA would likely be used, while at 
the farm scale landowner knowledge would be critical.  

Table 7. Quantity of research on GHG mitigation potential of agricultural practices based on review in 
companion T-AGG paper “Greenhouse Gas Mitigation Potential of Agricultural Land Management in the 
United States: A Synthesis of the Literature.” 
Land Management Activity # field or lab 

comparisons 
Regional Representation* 

Positive mitigation potential – significant research 
Conventional to no-till 526 1,2,3,5,7,8,9 
Diversify annual crop rotations 93 1,2,7  
Eliminate summer fallow 92 2,5,7  
Use winter cover crops 76 1,3,6,9  
Wetland restoration 70 2 (+ Canada) 
Rice water management for CH4 emission reduction 59 2 (+ Asia) 
Short-rotation woody crops 56 1,2,3 (+ Canada) 
Conventional to conservation till 53 1,2,6,7,9  
Convert cropland to pasture 46 2,7,9  
Cropland set-aside and herbaceous buffers 45 1,2,7,9 (+ Canada) 
Reduce N fertilizer application rates 24 1,2,3,7 (+ Canada) 

Positive mitigation potential – moderate research 
Improved grazing management, rangeland 17 2,7  
Include perennial crops in rotations 18 1 (+ Canada) 
Manage species composition on grazing lands 16 2 (+ Canada & global) 
Change from annual to perennial crops 15 2,3  
Rice variety development for CH4 emission reduction 15 2 (+ Asia) 

                                                      
7 This literature review did not include animal feed and manure management. 
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Land Management Activity # field or lab 
comparisons 

Regional Representation* 

Use nitrification inhibitors 15 5 (+ Asia & Europe) 
Change fertilizer N source – slow release 11 3,7 
Change fertilizer N placement 9 3 (+ Canada & Europe) 
Change fertilizer N timing 8 Canada 
Improved grazing management, pasture 5 9  
Agroforestry (e.g., windbreaks, buffers) 4 1,5  
Irrigation improvements (e.g., drip) 4 Europe 
Rotational grazing, pasture 4 9 

Little available data – but seem to have potential 
Manage farmed histosols to reduce GHG emissions 2 

 
1 (+ Europe) 

Convert histosol cropland to natural 3 Canada and Europe 
Uncertain GHG mitigation potential when considering life cycle 

Application of organic material (esp. manure) 28 1,4,5,8,9  
Biochar application 0  
Fertilize grazing lands 7 2,7,9 (+ Canada & global) 
Irrigation on grazing lands 8 7 (+ Australia & New Zealand) 
Convert dryland to irrigated 15 2,7  
Reduce rice acreage 0 - 

Low or negative GHG mitigation potential 
Reduce chemical use (other than N)  n/a**  
Change fertilizer N – ammonium-based to urea 15 3,8 (+Europe & Canada) 
Pasture to grassland – cease grazing 17 2,5,6,7 

Little or no available data – uncertain GHG impact 
Increase cropping intensity 0 - 
Drain agricultural land, humid areas 0 - 
Improve manure management (N2O) 1 Canada 
Agroforestry on grazing land 0 - 
Rotational grazing, rangeland 1 2 
Fire management on grazing land 0 - 
Improve fertilizer and manure NUE on grazing land 0 - 
* Regions for the 48 coterminous states are as follows: (1) Corn Belt, (2) Great Plains, (3) Lake States, (4) Northeast, (5) Pacific 
Northwest, (6) Pacific Southwest, (7) Rocky Mountains, (8) South Central, and (9) Southeast. 
** The GHG implication estimate for reducing chemical use does not require field comparisons, but relies on calculations of 
energy use for production, transport, etc., of these chemicals. 

9BAssessing model performance 
A number of different statistical measures should be used when evaluating model performance because 
each has strengths and weaknesses. For example, the correlation coefficient quantifies how well model 
outputs are correlated with measurements, but it is not influenced by model bias. For example, model 
outputs could be perfectly correlated with measurements (r2=1.0) but highly biased if each model output 
is twice as high as the measured value. Model evaluation is also dependent on the variable of interest, the 
reliability of measured data, and the scale of model application. For example, grain yields are more 
accurately and precisely measured than GHG fluxes, so model errors tend to be smaller for grain yields 
than for GHG emissions.  

Scale dependency is complicated. When results from many model simulations are aggregated spatially 
and temporally, through averaging or scaling up, errors tend to shrink as scale increases. However, model 
errors for small plots of land can be small if all important inputs are well known. For example, individual 
landowners can provide detailed information on land-use history and land management and use site 
sampling where other databases are lacking. This can provide high accuracy for a small scale. However, 
gathering all of this detail can be time-consuming and expensive and can raise questions of data 
consistency across sites.  
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If we want to better understand and compare the uncertainties associated with various models, we need to 
have a parallel assessment of the models. At this time we do not have a side-by-side assessment of these 
models with comparable methods that explore both the structural uncertainty and the input uncertainties. 
The modeling teams are interested in developing such a comparison over the next few years, but for now 
we are limited in our ability to compare the models. Even so, it is possible to provide some indication of 
uncertainty for these models from the following examples for DNDC (Box 1), which provides an example 
of the scale dependency of uncertainty, and DAYCENT (Box 2), which provides an example of the 
structural and input uncertainties. 

The process-based models are consistently being updated and calibrated as new information becomes 
available. While they are robust tools for quantifying GHG for many practices and cropping systems now, 
there are a number of opportunities to improve the function of these models, but they will require 
additional resources and research. Modelers need resources for further calibration of models to field 
studies, particularly those with research gaps, which is a continuing effort as the science evolves and 
refines remaining questions. Calibrating models for new crops and practices can cost from US$10,000 to 
US$50,000 when data are available, but there can be economies of scale if there are ways to combine 
crops. For some crops, the data can be collected from the literature and research sites; for others, 
particularly specialty crops, new data will need to be collected in partnership with growers and growers’ 
groups (Del Grosso et al. 2010; Salas 2010). All of the models would benefit from the creation of a 
network of reference sites around the country to track background levels of change (Paustian et al. 2006; 
Paustian et al. 2004; vanWesemael et al. 2011). This would allow calibration of the models to background 
trends like decadal or longer shifts in climate, and more importantly, it would provide an independent set 
of data to better characterize model uncertainty. A national soil monitoring network, such as the USDA 
Natural Resources Inventory system, could leverage existing activities and expertise so that a fully built-
out national system of about 5,000 monitoring locations could be established and maintained at a cost of 
US$2 to $3 million per year (K. Paustian, pers. comm.). The models would also benefit from greater 
information about what happens deeper in the soils (i.e., below the top 20–30 cm surface layer), which 
has become a consideration for quantifying soil carbon sequestration. It is becoming clear that the 
modeling community needs to have a focused, concerted effort of extensive independent model validation 
to develop statistically rigorous metrics of model uncertainties. Where there is sufficient data, these 
uncertainties can be assessed and quantified across regions, cropping systems, input data specifications, 
etc. In addition, such an effort would likely lead to finding out where the models do not perform well and 
lead to future improvements in the models. A new effort, the Agricultural Model Intercomparison and 
Improvement Project (AgMIP)7F

8 is focused on food security due to climate change and aims to enhance 
adaptation capacity in both developing and developed countries. Perhaps this could be expanded to 
include and integrate GHG modeling and mitigation outcomes.  

                                                      
8 http://www.agmip.org/ 
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Box 1. Uncertainty assessment for the DNDC model (by William Salas). 
Given that uncertainty is higher for N2O predictions than C, this assessment focused on N2O. For the full DNDC 
model assessment (69 detailed, independent field validation datasets for N2O emissions) at a single 
field/observation level, the model has an r-squared of 0.83 (measure of how well the model captures observed 
variability). In this case, the model captures well the observed variance in field measurements, but the precision is 
not great. To examine aggregation, we randomly selected groups of observations and compared the average 
emissions with the model. Aggregating four observations, the R-squared increases slightly to 0.86, but the RMSE 
(root mean squared error, measure of the precision of the model or typical error) drops to 3.9 kg N-N2O/ha (1.8 t 
CO2e). At an aggregation of 10, the r-squared is 0.92 and RMSE is down to 1.8 kg N-N2O/ha (840 kg CO2e). The 
larger RMSE at the single-field scale is driven by a few sites with very high modeled or measured emissions. As 
the modelers compile a larger independent validation database, they will be able to provide more detailed 
estimates of model structural uncertainty. In addition, they will be able to assess the impacts of uncertainties in 
inputs on model estimates (Salas 2010). 
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The simplified DNDC model (Willey and Chameides 2007), which requires only eight inputs (annual precipitation, 
average temperature, soil carbon, soil texture, soil pH, crop type, amount of fertilizer, and amount of organic 
amendments), was compared with 434 independent field datasets. Based on this analysis the model captured 
61% of the variance of field measurements with an RMSE of 11.2 kg N/ha. The model is accurate within 3 kg N2O 
60% of the time and within 5 kg 74% of the time at the field/plot scale. Note that most of the large differences 
between modeled and observed values occurred at sites with high emissions. The full DNDC model is more 
precise than the simplified model by approximately 3 kg (based on our analysis of 69 observation datasets). 
Assuming a similar distribution of errors between the simplified model and our full model, the full model should be 
within 2 kg N-N2O of observed data approximately 74% of the time and within 5 kg N-N2O of observed data 87% 
of the time at the field/plot scale. On average the simplified model is off by 2.5 t CO2e. The 95% confidence 
interval on this is +/- 470 kg CO2e. On average the full model is off by 1.6 t CO2e (Salas 2010). 
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4BUsing Models for Protocol or Program Development 
Given the complexity of most process-based models and the amount of data they require, running them 
accurately and consistently requires a certain level of sophistication and expertise. Setting up the full 
process models and running them for individual projects is complex, requires substantial expertise, may 
be prone to error or bias, and may be cost prohibitive for a project. One of the primary challenges in using 
these process models for determining baseline and quantifying GHG impacts at farm- or regional-scales is 
to standardize how the technology can be made available to non-expert users such as project developers, 
consultants, and verifiers, in quantification protocols or program guidelines. Given the different model 
types, complex input variables, different scales of application, and range of sensitivities, the model 
selected and how it is used may have a profound impact on the GHG changes quantified (Dumanski et al. 
1998). Therefore, developing approaches to apply models in a standardized, simple, and transparent way 
will enable their application in large-scale programs or environmental markets. As described above, these 
models can be used in two distinct ways, which correspond with the scale of use: regional or farm scale. 
The options are to have experts run the models to develop regional emissions factors (1 below), or to 
design a user interface for the models that standardizes model use for farm-scale quantification that fits 
within a program accounting framework (2 below). We use the terms farm scale versus regional scale to 
refer to the scale at which the models are run. Both lead to the development of programs or protocols that 
are implemented at a farm scale, where net GHG emission and verification occur at the farm scale and 
can be aggregated across multiple farms.  

Box 3. Uncertainty analyses for EPIC/APEX (by R. César Izaurralde). 
Wang et al. (2005) used data from a long-term field trial of continuous corn with varying N fertilizer levels to 
conduct sensitivity and uncertainty analyses of crop yields and soil organic carbon dynamics simulated with the 
EPIC model. Expert knowledge was used to select six crop and three soil parameters for sensitivity testing. The 
Generalized Likelihood Uncertainty Estimation (GLUE) procedure was used to generate output probability 
distribution functions and confidence limits based on likelihood weights. Observed corn yields fell within the 5% 
and 95% confidence limits calculated for all treatments from 1,500 simulations. Comparable results were obtained 
for soil organic carbon except for one treatment. A variance-based sensitivity analysis using the Fourier Amplitude 
Sensitivity Test (FAST) was used to assess sensitivity. High total sensitivity indices of corn yields were detected 
based on likelihood weights for the parameters investigated, suggesting that the good agreement between 
observed and simulated yields does not depend on a single parameter but on the interaction among several 
parameters. Similar results were obtained for soil organic carbon. Wang et al. (2006) conducted sensitivity 
analysis of the APEX model when used for the Conservation Effects Assessment Project (CEAP) National 
Assessment. Two sensitivity analysis methods (variance-based and enhanced Morris) were evaluated and the 
enhanced Morris method was selected. Influential parameters identified included the NRCS curve number index 
(e.g., for runoff, water erosion, nutrient losses), Hargreaves PET exponent, RUSLE C factor coefficient, and 
potential heat units. 

Box 2. Uncertainty analyses for DAYCENT/CENTURY (by Stephen Del Grosso). 
Several analyses of uncertainty have been conducted for the DAYCENT model (for N2O emissions) and the 
closely related CENTURY model (for soil C dynamics), mainly in conjunction with U.S. national GHG emission 
estimates (Del Grosso et al. 2005; Del Grosso et al. 2010; Ogle et al. 2007; Ogle et al. 2010). Analyses have 
combined Monte Carlo approaches to estimate uncertainty in model inputs and a statistical approach (mixed-
effect linear models) utilizing available long-term agricultural field experiments to estimate model structural 
uncertainty. Uncertainties for both N2O and soil C estimates were strongly scale-dependent. For the structural 
uncertainty estimates for CENTURY, measurements from a total of 47 experimental studies, accounting for 872 
treatment combinations (varying management, soil, slope, etc.), were included in the analysis (Ogle et al. 2007). 
At national scale, the 95% confidence limits on estimated changes in soil C stocks was around 20% of the mean, 
with the majority of the uncertainty attributable to model structural uncertainty (Ogle et al. 2010). For an individual 
major land resource area (MLRA1), total uncertainties in soil C stock changes exceeded 100%, illustrating the 
impact of sparse data for both model inputs and field experiments. For N2O emissions, a total of 12 sites were 
used in developing the structural uncertainty estimate (Del Grosso et al. 2010; Ogle et al. 2010). For national-
scale estimates, the 95% confidence limits for N2O emissions had a lower bound of 34% below the mean and an 
upper bound of 51% greater than the mean. Of total uncertainty, around 80% was attributed to model structural 
uncertainty. 
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1. At an ecozone or regional (pTier 2) scale, covering areas with similar soils and climate, to 
produce reasonable, regionally sensitive emissions factors that can be combined with equations 
or formulae and embedded within a protocol or program accounting methodology. This is a top-
down approach using regional averages of model runs tailored to soil type, agroclimatic zone, 
and cropping and management systems present in the region. Using models at this scale cannot 
reflect the spatial/temporal variability of GHG dynamics at a particular local site in the region. 
This approach tends to be more practice-specific, where emissions factors are determined for 
specific activities and gases, and perhaps for common combinations of activities, but is unlikely 
to offer as much flexibility in combining multiple practices.  

2. At a farm or site (pTier 3) scale, which can be used as a quantification tool within a protocol or 
program accounting methodology. This is a bottom-up, fine-scale approach where GHGs from 
individual farms and their variability in cropping, management, and soil type are quantified at the 
farm/field level and aggregated for projects. This will require a decision support interface to 
allow non-experts to input data and run models. At this scale models can capture fine-scale 
variability and dynamics, but do require significantly more site-level data inputs and detailed 
verification. This approach can integrate across various practices in real time, allowing more 
flexibility.  

A hybrid is also possible, where a farm-scale model uses Tier 1 or Tier 2 emissions factors for a particular 
activity when experimental data are insufficient to model that activity at the finer scales.  

The choice of scale of model application is based on many factors. The choice between a regional and 
farm-scale approach will be a balancing act among precision, flexibility, and complexity of 
implementation. A regional approach might be used where we have less research and less confidence in 
fine-resolution outputs of the process models or where we do not have or cannot acquire sufficient site-
level data, or if complexity of verification at a site level is too costly or difficult. Where models and data 
are considered sufficient or obtainable at reasonable cost a site-level approach may be viable and 
preferable. See Table 8 below for a side-by-side comparison. 

Farm-scale quantification requires full resolution use of process models, which will require (1) significant 
user support, or even better, a model user (or decision support) interface that runs the model in the 
background and produces results in a readable form, and (2) additional farm-level data inputs. Due to the 
complexity of the models, standardization of model use is necessary to streamline the quantification 
process, simplifying the number of user-defined inputs; standardize the data used; and provide procedures 
for generating standard estimates of uncertainty. This will increase transparency and consistency in model 
use and simplify verification of model estimates. It reduces quantification risk for all components of the 
system, reduces costs for project developers and farmers, and assists with achieving project 
implementation at scale. One of the limitations of standardized user interface (decision support) tools 
such as COMET VR8F

9 has been a perception that there was not sufficient representation of relevant 
cropping and management combinations to represent farmer actions. While these standardized approaches 
do not include all crops and management options, they continue to evolve and newer versions will likely 
have very significant coverage of major crops and management options similar to the full models as 
depicted in Tables 3 and 4. These earlier tools did not run the full model in the background, but the new 
COMETFarm tool will have that capability, and others are under development (Table 6). Setting up such 
a user interface tool may be cost-prohibitive for a program. There will be a need for continual updating 
and enhancement to these existing tools as research moves forward, adding new management options or 
improving the accuracy of existing options. The models can also provide standardized estimates of 
uncertainty which can be used to adjust crediting based on confidence in the model estimates, at the 

                                                      
9 http://www.cometvr.colostate.edu/ 
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appropriate scale. Thus, the standardized tools can provide a transparent way to embed quantification 
uncertainties into protocols and crediting. 

Farm-scale quantification also requires more detailed farm-level data. The U.S. has sufficient soils and 
climate data, but this may not be true elsewhere. We do not have sufficient collected information on 
management (past and current crops, fertilizer regime, tillage, number of animals, etc.) thus we need to 
have farmers provide this directly and have standardized ways to verify it (see Appendix for more detail). 
Again, a user interface to the models becomes important as a way to gather information in a standardized 
manner that aligns model and farmer definitions without being too onerous or costly. Modelers estimate 
that it should take a user 30 to 60 minutes to enter sufficient data into the user interfaces. 

With the development of standardized user interfaces for quantification, the challenge for a farm-scale 
quantification approach primarily comes in implementation. The quantification process has to be applied 
within the typical carbon accounting processes used in most programs or registries. The program will 
have to develop the necessary alignment among the model-defined practices (e.g., a no-till system), how 
the farmer needs to implement the no-till management system to meet the model definition (e.g., one 
disturbance event to directly apply seed and fertilizer), and how the verifier assesses the supporting on-
the-ground evidence of the practice that is gathered by the project developer or farmer (percent residue 
cover or disturbance indices of the no-till equipment, remote sensing to verify a single disturbance event). 
Given the potential complexity of verifying management at the farm level, the program will need to 
develop procedures and guidance for data and supporting records for assessing the validity of the farmer-
entered management data. For project developers, who likely will be aggregating a number of farms into a 
project of suitable size, the complexity and cost of managing this farm-scale approach increases. Project 
developers will need to collect the supporting evidence from the participating farms in order verify that 
the farm-entered management data aligns with the modeled quantification. Other programs have 
developed explicit guidance on the necessary records and evidence required to meet protocol 
specifications. This can include receipts, shipping records, truck weights, invoices, crop insurance 
records, proof of farm equipment specifications for no-till and fertilizer band delivery, and remote sensing 
and aerial photography for field sizes and equipment passes (which are likely available through USDA 
and the U.S. Geological Survey). This greatly simplifies and enables a more efficient verification process. 
To ensure the resulting credits from the projects are quantifiable and verifiable, the farm-level approach 
requires much greater specificity of farm-level activities than a regional approach, but it is adding a 
higher level of precision that is not dependent on averaging across a large-scale program to achieve 
sufficient accuracy. 

Complications in implementing programs at farm scale, particularly with verification and alignment of the 
verification method to the modeling approach, may make application at the farm level too difficult or 
expensive for some programs, making the regional scale preferable. The regional or ecozone approach 
may be used to increase transparency of project measurement, monitoring, and verification; to control 
quantification uncertainty; and to increase the practicality of implementation to project developers. The 
regional approach has been shown to achieve scale in Alberta, with large numbers of farmers engaged in 
GHG reductions relatively quickly. Uncertainty due to spatial and temporal variability of input variables 
can be reduced by averaging or aggregating modeled results in the standardized regional application. 
Averaging approaches work best in a large-scale program.  

The following matrix may be useful to program operators when considering which approach to use (Table 
8). 

Table 8. Comparing regional versus farm-scale use of models for agricultural GHG program and protocol 
development. 
Consideration Regional Scale Farm Scale 

Quantification 
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Consideration Regional Scale Farm Scale 
Data Availability Uses regional databases; extrapolating results in an 

averaged fashion; useful where a lack of data or 
research exists and models are limited. 

Uses detailed farm input data and experimental data to 
calibrate the models; not all systems in all regions are 
well-researched (livestock-pasture systems are a 
knowledge gap). 

Quantification Model-based, expert run to develop regionally explicit 
emissions factors, control on scale-up and uncertainty 
quantification to ensure conservativeness is applied.  

Model-based, project-level application for baseline and 
project practices allows more flexibility in management 
and more user-defined inputs; this can lead to 
challenges in implementation and additional work to 
maintain transparency and consistency. 

Uncertainty Quantified at the regional scale  Currently quantified at a regional scale (MLRA). New 
soil inventory and monitoring may allow finer-scale 
uncertainty in future.  

Accuracy Lower accuracy, regional management data includes 
aggregated self-reported data that may not always 
have full alignments of definition, but on average can 
provide reasonable accuracy 

Higher accuracy, if farm-level data have more specific 
alignment with definitions used in models and some 
level of verification. 

Flexibility Less flexible, but combined practices can be modeled More flexible in combining practices and capturing 
farm-level management variability. 

Implementation Considerations 
Verifiability Standardized and transparent approach: typically 

verify practice and standard farm records for proof 
Can be more complex; given greater farm-level data 
input, may want to verify a number of these inputs, 
probably focusing on those that have the most impact 
on model quantification outcomes. So information on 
model sensitivity would be helpful.  

Cost  Cost burden on program; less transaction costs on the 
project developer 

Cost burden on program for quantification method and 
alignment and on project developer for monitoring, 
reporting, and verification (MRV) 

Risk Risk managed by program; expert-generated emission 
factors; asserts greater control over protocol factors 
that can lead to risk. 

Increased flexibility and complexity can increase risk of 
inconsistent application; program will need more 
explicit guidance on implementation. 

Profit to project Maybe greater due to low MRV cost Depends on MRV requirements 
Ease of 
aggregation 

Aggregation process greatly simplified. Greater level of detail needed and possible complexity 
for MRV 

 

At this time, uncertainty will likely be quantified in a similar manner for both regional and farm-level 
applications. Modelers are not comfortable estimating uncertainties at a farm level unless there are field 
measurements to compliment the modeling, which would add cost and complexity in implementation. 
The COMETVR tool and newer version COMETFarm will calculate uncertainty at the MLRA scale, 
which corresponds with ecologically relevant variability and is a unit used widely by USDA for 
management and policy recommendations. The MLRA would also be a good choice for regional-scale 
modeling, suggesting similar estimates of uncertainty. Efforts under way to expand U.S. soil inventory 
and monitoring systems to up to 5,000–10,000 sampling locations may allow quantification of uncertainty 
at finer scales in the future. 

The text boxes in the section on model accuracy above, review uncertainty assessments for each of the 
models detailed in this report. They suggest that programs and protocols will have to develop 
conservative accounting procedures that consider the level of uncertainty that is inherent in complex 
biological processes. Where data and research are robust, uncertainty around changes in soil carbon at the 
MLRA scale can be ±20%–30% of the mean with 95% confidence (95% CI limits),9F

10 and changes in 
nitrous oxide can be ±30%–50% of the mean. At the other extreme, where data and research are sparse 
the models may not have enough information to calculate uncertainty, which may limit their application 
in those regions or for those practices until more research can be incorporated. 

                                                      
10 For example, if the estimate is 1 t CO2/ha, 95% of a random sampling of those instances would fall between 0.8 and 1.2 t 
CO2/ha. 
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Another important consideration in applying these models is how the baseline scenario is set. By default, 
most of these models assume that historic trends in climate, yield, and disturbance continue forward in 
time. On a shorter time horizon (e.g., 10 years), this may be a reasonable assumption; however, on a 
longer time horizon (e.g. 30 to 100 years), the impacts of climate change are likely to alter rainfall, 
temperature, and disturbance patterns in significant ways that could change the magnitude of GHG 
emission and carbon sequestration from agricultural systems. It may even result in a change of direction 
for carbon sequestration, where systems that were storing carbon are now releasing and vice versa, where 
systems that were releasing begin storing. Models of climate change at regional and local scales are still 
highly uncertain, which makes these longer-term projections difficult to incorporate into biogeochemical 
process models at this time. However, this is an active area of research that should inform future updates 
to these models and how they are used for mitigation programs and policies. 

10BQuestions to ask when selecting a modeling approach 
Based on the discussion above, several key considerations need to be taken into account when setting up 
model application for GHG mitigation programs. Below is a list of these considerations posed as 
questions that a program administrator can ask when setting up a modeling approach for quantification.  

1. Are there good biogeochemical models for the program or protocol under consideration?  
a. Do any of the models include all the relevant GHGs, crops, regions, and management 

practices that will be included in the program? 
b. Are they sufficiently calibrated and parameterized to run the management options of interest 

at sufficient levels of confidence? Assess how the model handles uncertainty from model 
structure, parameters, and input data. Has the model been adequately tested for structural 
uncertainty in the production system of choice?  

c. Do they include the appropriate default data (best databases) for soils, crops, livestock, and 
climate data?  

d. Do they handle land-use history sufficiently to address long-term trends in soil carbon stock 
changes? Has the model been appropriately initialized and calibrated for soil carbon and land-
use history? 

e. Are there limits to the scale of model use? How does scale affect uncertainty?  
2. Should the program consider user interface versions of biogeochemical process models for farm-scale 

quantification?  
a. If models are capable of farm-scale quantification, can it aggregate information across 

multiple fields/farms, crops, and management practices? How does that aggregation process 
affect the estimates (i.e., has it been conservatively done)?  

b. What user/farmer input is required? Is this information that the farmer will have and that the 
program can verify?  

c. What MRV procedures and guidance need to be built to make the farm input data, and 
supporting farm/project evidence match model definitions (e.g., tillage/seeding equipment, 
disturbance indices, crop yield evidence, irrigation scheduling, fuel usage, fertilizer type/rate 
per field evidence, field size)? If needed, can adjustments be made to the model to conform 
with implementation needs?  

d. Is a user interface tool available that covers desired management options? Check the tables in 
this document and ask model developers to see if a standardized user interface version of the 
biogeochemical process models is available and ready for use. 

e. If not, can one be readily developed or adapted to address needs?  
f. How is baseline calculated? If necessary can this be adjusted to meet protocol or program 

requirements? 
 

3. Should the program consider regional-scale model runs for development of emissions factors and 
equations instead? If questions in #2 above suggest that farm scale is not viable, or if implementation 
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costs for project development, verification, and alignment or risks are too high, a regional approach 
may be preferred. If a regional approach is used, the program needs to align standardized equations 
with modeled emissions factors.  
 

4. If no appropriate parameterized and calibrated model is available, can you build or calibrate a new 
one?  

a. All the same questions above apply in terms of which models to use. 
b. Additional questions include whether you would like to develop a tool to run at the farm/site 

scale, or use the model to develop soil-, climate-, region-specific default factors to have a 
more landscape-level tool.  

Examples of How Modeling Is Being Incorporated into Protocols  
Pearson and Brown (2010) and Pearson et al. (2010) explored the use of a Tier 2 approach versus a Tier 3 
process modeling approach for quantifying N2O. They tested a simpler model based on a study by 
Bouwman et al. (2002), but they found it insufficient for project-level calculations (Pearson and Brown 
2010; Pearson et al. 2010) and opted to use the DNDC model for the U.S. instead. The nitrous oxide 
methodology they developed for the American Carbon Registry using a farm-scale application of the 
DNDC process model can quantify GHGs for changes in fertilizer quantity, type, placement, and timing, 
as well as use of timed-release fertilizers, nitrification inhibitors, shift to crops with lower N demand, and 
adoption of precision agriculture.10F

11 However, it does require significant site-specific soil, climate and N 
source for model inputs (see Appendix A). Uncertainties are estimated by the model and discounts for 
uncertainty are required. The methodology has been approved under the American Carbon Registry 
program. Many of the critical soil input data for running the DNDC model (or other process models) are 
available from the NRCS SSUGRO soil survey data.11F

12 However, there are several site-specific soil and 
crop parameters that need to be measured for model input. For nitrous oxide management there may be 
sufficient data available in the U.S. to fill in necessary inputs for complex process-based models. The 
project developer will need to have relatively sophisticated expertise in order to apply the methodology 
across a number of farms. 

By way of contrast, the Alberta Compliance-based Offset System has a government-approved protocol for 
Tillage System Management that has been developed for regional-scale application.12F

13 The quantification 
methodology used in the protocol relies on Best Practice Guidance taken from the IPCC Tier 2 
approaches used in Canada’s National Emissions Inventory. The result is a series of performance standard 
baselines that are projection-based and applied at regional levels to quantify net changes in GHGs (carbon 
dioxide from fuel usage, nitrous oxide and carbon sequestration). The quantification for changes from 
full-till to reduced-till to no-till, and combinations in between, is set out in a series of equations with 
custom emission factors for baseline and project, applied at the regional scale. The DAYCENT model 
was run by experts at finer scales, with Monte Carlo analysis to derive uncertainty estimates for carbon 
sequestration rates (or reversals). The results were averaged across larger reporting zones, assuming the 
average represents the best value for use for GHG reporting on a regional basis. Standardized application 
of calibrated model estimates at Soil Landscape of Canada (SLC) units for each crop-soil-management 
type were rolled up to ecodistrict level (analogous to the MLRA scale) and aggregated conservatively so 
that the coefficients underestimate soil carbon gain on average by 25% or more when compared to 
averaged empirical data. This resulted in conservative estimates for ecodistrict-scale estimates. These 

                                                      
11 http://www.americancarbonregistry.org/carbon-accounting/ACR Methodology for Emission Reductions through Changes in 
Fertilizer Management - public comment draft June 2010.pdf. 
12 http://soils.usda.gov/survey/geography/ssurgo/. 
13 Many of the details described here are in an updated version of the protocol which is not yet publically available. These 
document reflect the current non-updated version. Tillage Protocol - http://environment.alberta.ca/02308.html; Supporting 
Technical Paper - http://carbonoffsetsolutions.climatechangecentral.com/files/microsites/OffsetProtocols/
ProtocolReviewProcess/1stCycleProtocolReview/Tillage/14_No_Till_Default_Protocol_SMTWG_Oct2006_mod.pdf. 

http://www.americancarbonregistry.org/carbon-accounting/ACR%20Methodology%20for%20Emission%20Reductions%20through%20Changes%20in%20Fertilizer%20Management%20-%20public%20comment%20draft%20June%202010.pdf�
http://www.americancarbonregistry.org/carbon-accounting/ACR%20Methodology%20for%20Emission%20Reductions%20through%20Changes%20in%20Fertilizer%20Management%20-%20public%20comment%20draft%20June%202010.pdf�
http://soils.usda.gov/survey/geography/ssurgo/�
http://environment.alberta.ca/02308.html�
http://carbonoffsetsolutions.climatechangecentral.com/files/microsites/OffsetProtocols/ProtocolReviewProcess/1stCycleProtocolReview/Tillage/14_No_Till_Default_Protocol_SMTWG_Oct2006_mod.pdf�
http://carbonoffsetsolutions.climatechangecentral.com/files/microsites/OffsetProtocols/ProtocolReviewProcess/1stCycleProtocolReview/Tillage/14_No_Till_Default_Protocol_SMTWG_Oct2006_mod.pdf�
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would not necessarily be representative of the expected C change for a specific area of land, but would be 
representative on average. Averaging over larger zones was done by weighting by the area of agricultural 
land represented by that soil component-SLC polygon combination. These averages were used to develop 
the empirical equations and emission factors. In this manner the quantification risks/uncertainties are dealt 
with upfront. 

With this standardized approach, the relevant farm activity data to calculate the emissions and verify the 
activity data accordingly is streamlined. Farm records are described as farm resource inventories held by 
the farmer or other agri-businesses (e.g., custom applicators, crop insurance agencies), including dated 
field records of tilled land and tractors or machinery used; soil disturbance measurements; production 
accounts of crop operations; crop/field records, including chemicals purchased, farm maps, or crop 
rotations; income and expense records for land, labor, or machinery; transaction journals; general ledgers; 
etc. These records may be augmented or substantiated through other information sources such as crop 
insurance, aerial photographs, and satellite imagery, and should be retained by both the farmer and project 
developer for the duration of the project. Definitions for tillage type and eligible cropping systems are 
explicit in the protocol, as is the requirement to prove soil disturbance levels through machinery 
measurements and documentation. Guidance to verifiers and sample data collection sheets are also 
provided in the appendices.  

5BConclusion 
Biogeochemical models can provide a robust tool for quantifying GHG impacts of alternative 
management and cropping practices in the United States. These models have been in use and tested for 
decades, providing significant insights into model capabilities and uncertainties. The primary limitations 
of these models are due to gaps in research and data, which can and are being filled over time. These 
models can be used in mitigation programs or protocols in two different ways: (1) to develop regionally 
specific emissions factors that are embedded in protocol equations for quantifying GHGs in projects, and 
(2) to develop user interface decision support tools that allow use of the models by non-experts for farm-
scale quantification of GHGs. The choice between a regional- and farm-scale approach will be a 
balancing act among precision, flexibility, and complexity of implementation. Models can provide a 
standardized, transparent, and low-cost means for quantifying GHGs. 
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6BAppendix A: Examples of Guidance and Standardization Necessary for 
Implementing Protocols That Use Models  
The first two examples below show how different the verification of a protocol can be given how models 
are used. As noted above, these examples show how a farm-scale application of the models can require 
more guidance and standardization of the verification and reporting process. This is likely to be a 
continuum. Farm-scale application of models can be further standardized than the example provided here 
perhaps using defaults for factors that have little impact on quantification outcomes (because the model is 
not sensitive to that factor), or program managers may be able to verify certain factors, like residue, for 
the whole program instead of farm by farm by using remote sensing data. 

The third example shows how the alignment of definitions between models and application were 
accomplished for a tillage protocol. Ideally, this type of alignment will occur whether models are used at 
farm or regional scales, but at regional scales, the definitions may be inherent in the default databases, 
somewhat limiting how precise the model and verification definition need to be. 

Figure A1. Example of Data Inputs Required for the ACR Nitrous Oxide Reduction Methodology 

 

In the example above, the farm records that will need to be gathered are listed in the project record 
column. Evidence of the tillage system, N fertilizer, and organics and irrigation systems will need to be 
gathered. Project developers or the program will need to apply some standardized procedures to ensure 
consistency. In addition, lab results of measured N of the grain, leaf, and stem, and roots will need to be 
conducted and gathered on a per-crop basis, along with field capacity and wilting point (one-time 
measurement). Issues of appropriate field sampling procedures to avoid bias will need to be demonstrated 
by project developers, or laid out in additional guidance by the program. The amount of residues left after 
harvest (fraction of leaves and stems left in the field after harvest) input can have a large impact on the 
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GHG quantification; thus, programs will need to ensure that bias is minimized through standardized 
sampling procedures across the farms and projects. The ACR methodology states: “Project Proponents 
must retain a conservative approach: that is, if different values for a parameter are equally plausible, a 
value that does not lead to under-estimation of net GHG emissions must be selected.” But this guidance 
may not be explicit enough to ensure consistency and transparent quantification and implementation of 
the aggregated farms across the project. Additional program guidance will likely be needed. 

11BA2. Example of data inputs required for the Alberta Tillage System Management 
Protocol; additional guidance and required and supporting evidence 
The standardized regional approach uses spatially and temporally aggregated default parameters for yield 
data (10-year averages), N fertilizer application rates, fuel use, soil characteristics, crop parameters, and 
other variables (finer spatial unit databases with modeled results scaled up to ecodistrict level). The 
scaling up procedures (see Uhttp://environment.gov.ab.ca/info/library/7921.pdfU and Appendix A), average 
out variability introduced by the various combinations of crop-soil-management-climate interactions for 
an ecodistrict, resulting in a very streamlined set of farm-level inputs to be gathered for project 
accounting and verification. However, flexibility is limited in that there is no ability to influence the 
quantification due to changes in nitrogen management, residue management, different crop types (annual 
only), or improvements in yield, which should result in increased carbon sequestration. This is very much 
a performance-standard kind of approach. 

Farm-based records and justification are required for the following factors: 

• ownership of emission reductions; 
• ownership of fields and associated reductions; 
• number, size, and location of fields which are part of the project;  
• crop type; and 
• tillage practices. 

 
Table A2-1 below is a summary of the data points and sources of evidence needed to ensure alignment 
with the model-based quantification and verification for the protocol.  

Table A2-1. Data inputs and sources of evidence for the Tillage Management System Protocol. 
 Evidence 

Ownership of Emission Reductions Aggregators: Agreements between aggregators and farmers; farm titles search to 
ensure landowner identity 
 
Farmers: Land Rental/purchase/financing agreements and/or agreements between 
farmer and landowners 
 
Landowners: Purchase/financing agreements 

Ownership of Fields Same as above 
Number of Fields A table comparing the fields from which emission reductions are being claimed 

and ownership documentation 
Size of Fields1 • GPS track files from specific farm equipment; or 

• GPS shape files derived from field inspection; or 
• Re-measurement using Alberta soils viewer; or 
• Satellite data; or air photos 

Location of Fields Same as above 
Crop Type • Physical inspection 

• Seed purchase records, crop sales records, and harvest data reviewed by 
professional agrologist.  

 
Crop type data can also be further substantiated by crop insurance data, however, 
crop insurance data on its own is considered an insufficient data source. 
  

http://environment.gov.ab.ca/info/library/7921.pdf�
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 Evidence 
Tillage Practice and number of 
passes 

GPS output from specific farm equipment; or 
Satellite data interpretation (with ground truthing); or 
Aerial Photo interpretation (at specific times of year, if available, this can provide 
strong evidence of recent practices); and/or 
Physical inspection of field;  
Physical inspection of seeding/tillage equipment claimed as low till (openers 
divided by shank spacing); and 
Review of farm records by professional Agrologist in addition to a physical 
inspection of tillage equipment with accompanying statement of review 

1 – if field dimensions change, then measurements will need to be re-taken  
 
The scalability of this kind of protocol has been demonstrated in the Alberta Offset System. To date, after 
three compliance cycles, over 4.4 million metric tons of verified soil sequestration offsets have been 
generated.  

12BA3. Example of Aligning Definitions in the Alberta Tillage System Management 
Protocol 
To ensure alignment with model-based definitions for tillage management systems in this protocol and 
farmer implementation the protocol sets out the guidance shown in Table A2-1.  

Table A2-1. Definitions of tillage systems in the Parkland1 and Dry Prairie protocol areas. 
Tillage System Cropped Land Period 2 Fallow Period 3 

No-till Up to two passes with low-disturbance openers (up to 38% 
each)4,5 or one pass with a slightly higher disturbance 
opener (up to 46%) to apply seed, fertilizer or manure,5 
discretionary tillage of up to 10%,6 no cultivation allowed. 
Manure applications are either injection or broadcast 
within these disturbance criteria – no incorporation. 

No cultivations 

Reduced till Soil disturbance to apply seed, fertilizer, or manure 
exceeds no-till definition and/or one cultivation in fall or 
spring 

One to two cultivations 

Full till More than one cultivation between harvest and 
subsequent seeding if no fallow in that period, or, more 
than three cultivations between harvest to subsequent 
seeding if fallow. 

More than two 
cultivations 

UNotes: 
1 The Peace River Lowland ecoregion is contained within the Parkland zone.  
2 Cropped land period applies to the management cycle that terminates at harvest, (e.g., harvest to harvest defines the cropped land 

period). This includes land preparation for seeding which may occur in the previous fall. 
3 Fallow period extends from harvest for one full year to the next harvest, typically in the fall. 
4 Percentage values associated with openers are based on maximum opener width (e.g., 5 inch openers actually measure 5.5 inches) 

divided by the spacing between shanks of the implement.  
5 Additional operations with harrows, packers, or similar non-soil disturbing implements are accepted (e.g., rodweeders are not 

acceptable). 
6 Discretionary tillage of up to 10% means that up to 10% of the surface area of a single agricultural field may be cultivated to 

address specific management issues. These areas are determined on an annual basis, meaning that specific areas may change from 
year to year. Discretionary tillage of greater than 10% of field area must be disclosed and that field is not eligible to generate 
offsets. This must be disclosed in project documentation. 
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