Strategies for Mitigating Rice GHG Emissions: Modeling and Geospatial Monitoring

April 23, 2010

William Salas

Applied Geosolutions, LLC Durham, NH 03924 USA wsalas@agsemail.com

Presented at Technical Working Group on Agricultural Greenhouse Gases (T-AGG): Experts Meeting

Overview

Opportunities for mitigation of methane emissions from rice

- Mid-season drainage: need for full GHG accounting
- Role of remote sensing for monitoring and verification of management practices
- California rice case study: Using model for GHG inventory and assessing mitigating opportunities.

Rice Methane Mitigation Strategies

- Increase soil Eh to stop methanogenisis
 - ✓ Upland rice
 - ✓ Mid-season drainage/shallow flooding
 - Addition of oxidants (e.g. use of sulfate and nitrate fertilizers)
- Decrease availability of C (DOC, CO2) during low Eh conditions (below -150 mV)
 - ✓ Crop residue management
 - ✓ Use of cultivars with lower root biomass (root exudates)
- Slow transport of CH4 from root/soil to atmosphere to enhance methanotrophy

China Mid-season Drainage: Change on CH4 and N2)

Midseason Drainage: Net Impacts

Comparing GHG, Yield and Water Requirement Effects of Different Mitigation Options from DNDC

Numbers Represent Annual Averages over 2000-2020 Relative to Baseline

Management option	CH ₄	N ₂ 0	CO ₂	GWP	Yield	Water
	(kg CO ₂ eq/ha)	(kg CO ₂ eq/ha)	(kg CO ₂ /ha)	(kg CO ₂ eq/ha)	(kg C/ha)	(mm/yr)
Midseason drainage	-2411	1283	-1	-1129	81	-9
Shallow flooding	-7402	-2440	591	-9251	134	-248
Upland rice	-11794	-3018	239	-14573	-381	-566
Off-season straw	-663	-40	21	-682	43	0
Ammonium sulfate	-367	-3668	-85	-4120	28	0
Slow-release fert.	287	727	-191	823	131	0

California rice case study:

Coupling Remote Sensing and Models for GHG inventory and assessing opportunities for reducing GHG emissions.

> NRCS, EDF and CRC Funding PIs: Eric Holst (EDF) and Paul Buttner (CRC) Collaboration with UC Davis

Remote Sensing Mapping Goals:

- Location of rice fields
- Water management: when fields are flooded and drained:
- Planting and harvest dates
- Plant development and biomass
- Tillage and residue management

Operational rice products
Hydroperiod
Crop calendar (DOY)
Planting dates
Parameterize models

Features

- "now-cast" ability; fully automated
- 95%+ accuracy
- multiscale (spatial & temporal)
 - 6.25 m seasonal (PALSAR)
 - Moderate (Landsat/AWiFS)
 - 250m daily (MODIS)
 - 250m 8-day (MODIS)

Used Remote Sensing (PALSAR and MODIS) to map rice extent and water management – indentify baseline management. ~~230,000 ha of rice (~500,000 acres) Mapped duration of winter flooded ➤-few fields had standing water in April (likely due to precipitation)

Observed and DNDC-modeled methane fluxes from a paddy rice field with winter flood and straw incorporation in Maxwell, California 1994-1996

CH4 Model Validation: With CA Sites

Observed and DNDC-modeled CH4 fluxes from rice paddies in China, Thailand, Japan, Italy and the U.S.

Methane Emissions from Rice: Comparison of Methods/Models

US EPA Emission Factor: 210 kg CH4/ha/yr
 ARB Emission Factor: 122 kg CH4/ha/yr
 DNDC Model: ~500 Kg CH4/ha/yr

Source of discrepancies?

CA Maxwell site has heavy soils (50% clay) and thus low emissions ~170 kg CH4/ha)
EFs do not include Winter flooding
RES data (~450 kg CH4/ha, source: Assa and Horwath, unpublished)

Remote Sensing of tillage practices

Operational Tillage Information System (OpTIS)

Integrating multiple satellite platforms

- AWiFS current acquisition strategy ongoing with USDA/USGS/NASA
 - o 5-day repeat, 56m spatial, 740km wide swath
- Landsat 5 and continued LDCM scale imagery
 - 016-day repeat, 30m spatial, 180km wide swath
- MODIS high temporal frequency accurate phenology / farm activity info oDaily, 8-day composites, 250/500m spatial, 1200km tiles
- Integration of different spectral, temporal, & spatial resolutions provide optimal information
 Landsat

Decision Tree Approach

Automated and operational; easily scalable & transferable

Key off indices sensitive to residue cover

Selects appropriate decision tree based on information available

- Requires at least one appropriately-timed Moderate
- **Resolution image**

• Can use one or multiple sensors providing various info

o Outputs: maps of crop residue cover, tillage practice, and

pixel accuracy

Classification Highlights

- Consistently achieves 80% accuracy in an operational context
- Accuracy is a function of class definition schemes (# of classes and residue bins)
- Maps tillage intensity throughout the year (Fall, Spring, Annual)
- Approach can map tillage, trends, & rotations

Role of Operational Remote Sensing...

Important for developing regional databases and for mapping and potentially monitoring management practices: for compliance, verification, or tracking sustainability...

Summary: Rice Mitigation Opportunities

Significant methane reductions possible on a per hectare basis ✓ US Area ~1,300 ha ✓ Must account of changes in SOC and N2O ✓ Water use co-benefits? Way forward: coupled measurement and model development (Ray's Sinusoidal curve)

RS can play an important role.