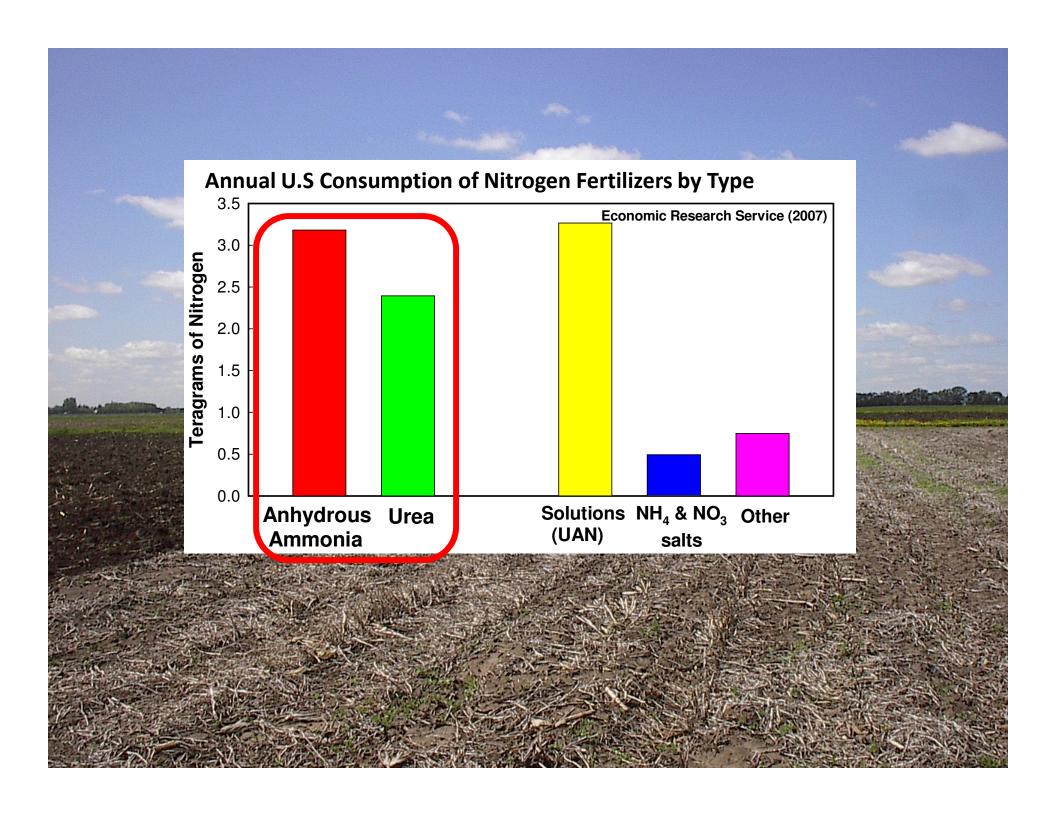
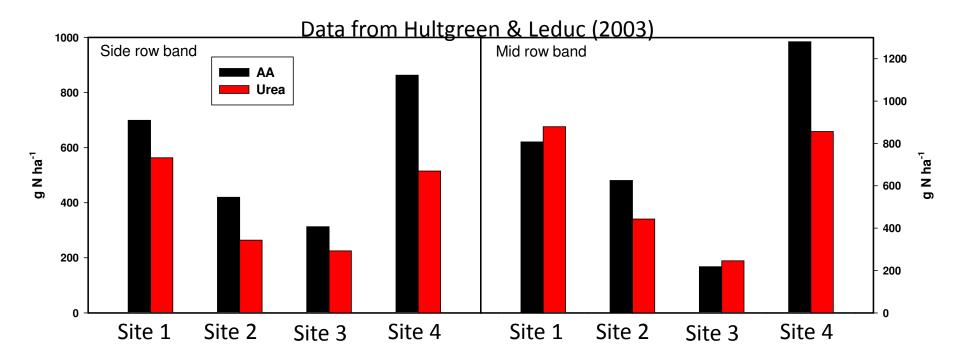
Review of T-AGG Draft Report "Nitrous Oxide Emissions Reduction in Agriculture"

Rodney T. Venterea USDA Soil & Water Management Research Unit, St. Paul, MN Dept. Soil, Water, and Climate — University of Minnesota


- 1. Potential for N source effects
- 2. Optimizing N management under reduced tillage
- 3. How to address Indirect N₂O Emissions ?

Fertilizer Management P. 3 of draft.

Product recommendations


"From the literature evidence it appears that there is no directional certainty in relation to reducing or increasing emissions of N_2O with respect to the effects of N fertilizer type......"

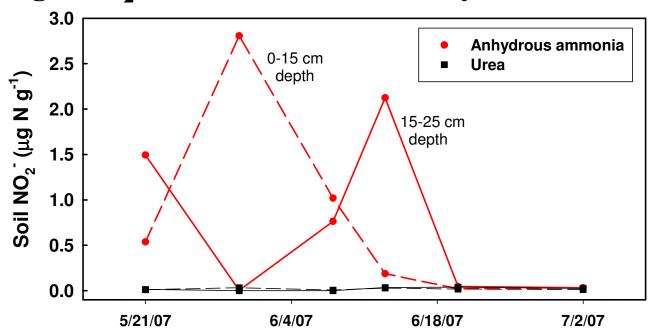
"The available data suggest that no overarching conclusions can be made to differentiate the effects of sources of N fertilizer on emissions of N_2O ..."

Comparison of conventional fertilizers: Anhydrous ammonia (AA) versus urea

Literature review includes 3 studies:									
	Location	Duration / crop	Rate (kg N/ha)	Result					
Venterea et al (2005)	Minnesota (3 dif	1-yr / corn ferent tillage systems)	120	AA > Surface-broadcast urea AA > UAN					
Burton et al (2008)	Manitoba (2 sites)	3-yr / wheat	80	no differences					
Hultgreen & Leduc(200	3) Saskatchewan (4 sites)	3-yr / flax/wheat/canola	60 –80	1 of 4 sites, AA > Urea (P=0.09) (trend was AA > Urea)					

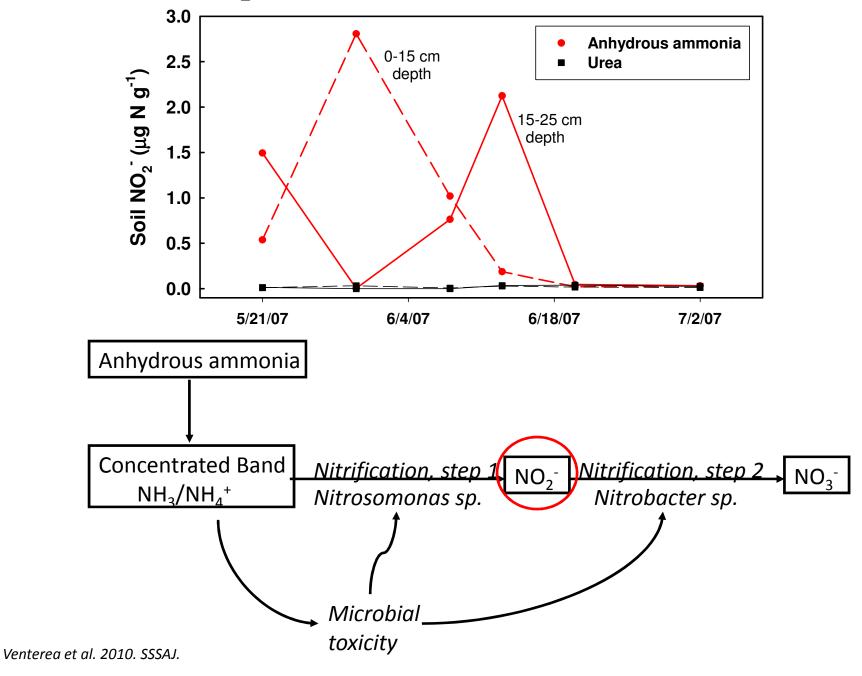
Comparison of conventional fertilizers: Anhydrous ammonia (AA) versus urea

Literature review includes 3 studies:							
	Location	Duration / crop	Rate (kg N/ha)	Result			
Venterea et al (2005)	Minnesota (3 different	1-yr / corn tillage systems)	120	AA > Surface-broadcast urea AA > UAN			
Burton et al (2008)	Manitoba (2 sites)	3-yr / wheat	80	no differences			
Hultgreen & Leduc(200	3) Saskatchewan (4 sites)	3-yr / flax/wheat/can	ola 60 <i>–</i> 80	1 of 4 sites, AA > Urea (P=0.09) (trend was AA > Urea)			
Not included in Literature review:							
Venterea et al (2010)	Minnesota	3-yr / cont. corn 3-yr / corn after soyb	150 eans 150	AA twice as high as DI-urea AA twice as high as DI-urea			
Thornton et al (1996) (semi-continuous, auto	Tennessee mated sampling)	1-yr / corn	170	AA twice as high as banded urea			
Venterea et al (unpublished)	Minnesota	2-yr / cont. corn (1 yr completed)	180	AA > DI-urea			
Other studies showing very high emissions from Parkin & Hatfield (2010) Iowa Venterea & Rolston (2000) California		n AA (but with no side- 1-yr / corn 1-yr / tomato	oy-side compar 125-168 120	rison with other fertilizers) Emissions > 3% of applied N Max fluxes > 1 kg N per ha per day			

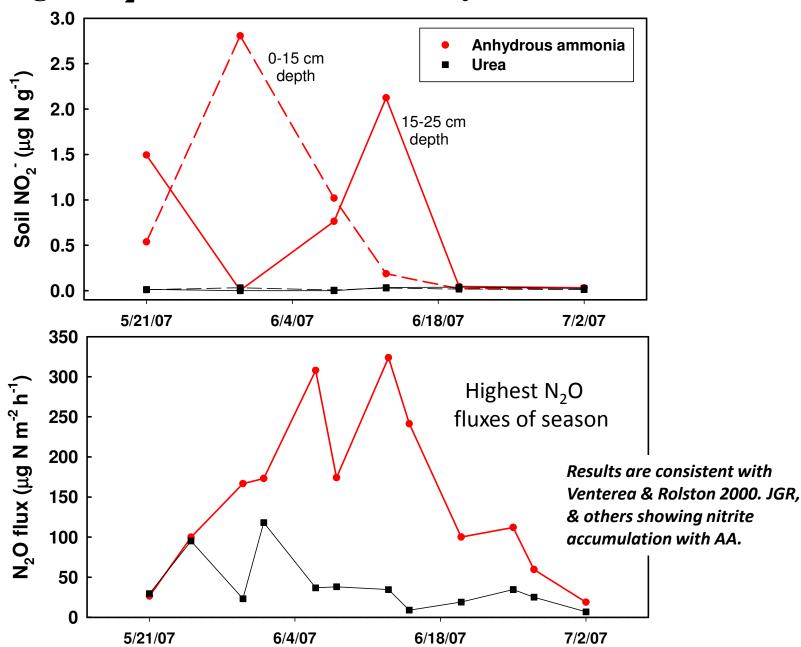

1-yr / corn

Bremner et al (1981)

Iowa

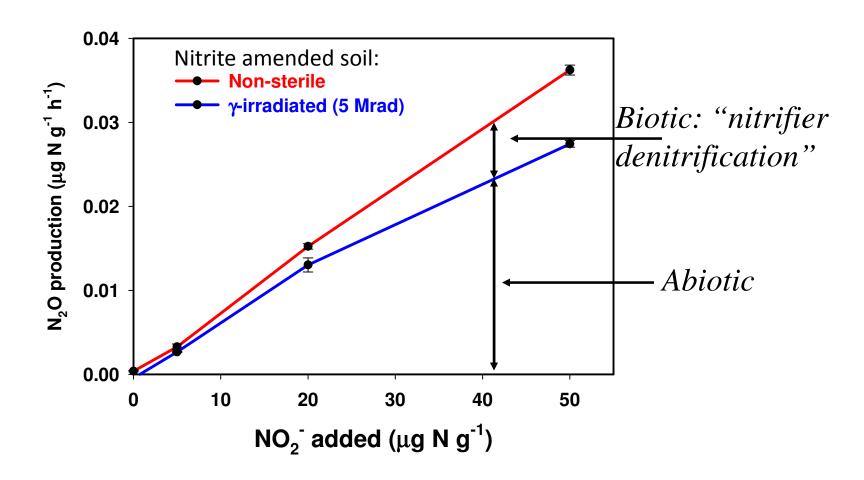

Emissions > 5% of applied N

Higher N₂O Production With Anhydrous Ammonia



Nitrite accumulation with AA.

Higher N₂O Production With Anhydrous Ammonia



Higher N₂O Production With Anhydrous Ammonia

Kinetics of N₂O Production from Nitrite Under Fully Aerobic Conditions

Little if any reduction of N₂O to N₂ under aerobic conditions.

Venterea, 2007. Global Change Biol. 13, 1798–1809.

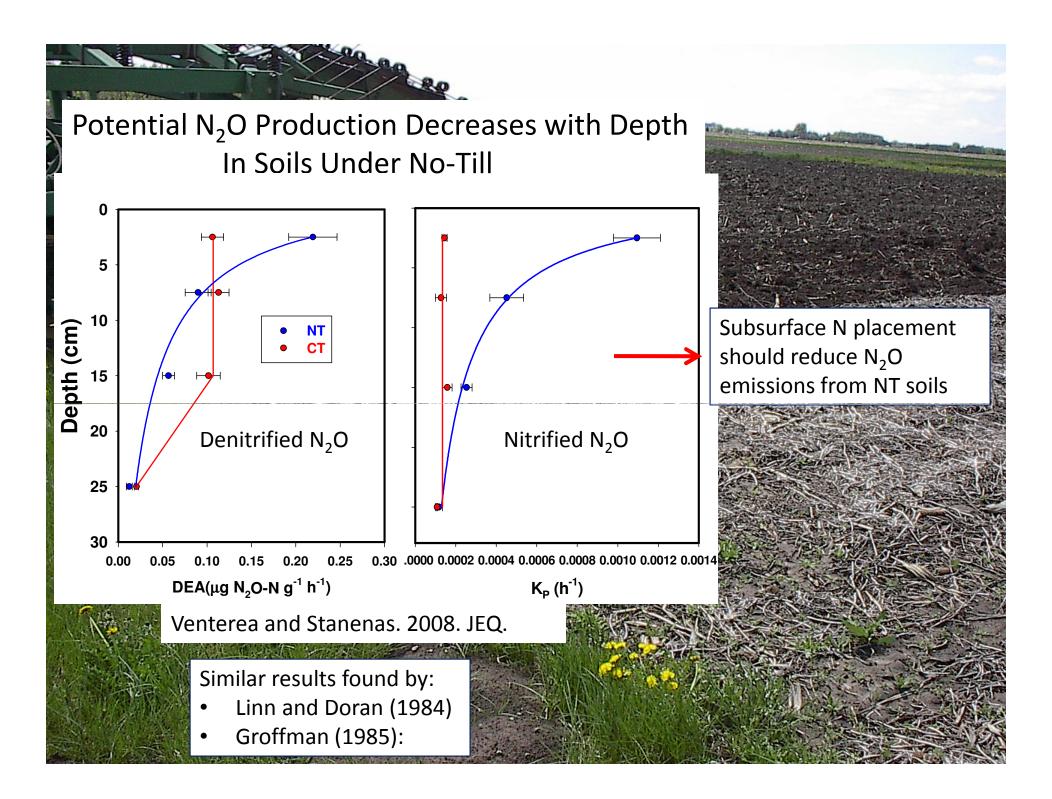
Fertilizer Management P. 3 of draft.

Product recommendations

"From the literature evidence it appears that there is no directional certainty in relation to reducing or increasing emissions of N_2O with respect to the effects of N fertilizer type....."

"The available data suggest that no overarching conclusions can be made to differentiate the effects of sources of N fertilizer on emissions of $N_2O....$ "

- More studies are definitely needed in different soils and cropping systems.
- Weight of current evidence points to higher emissions with AA (at least at N application rates typical for corn production).
- Potentially practical to move away from AA, but cost of other N sources is generally higher. Also, GHG cost of producing AA is generally less than other N sources, and this factor needs to be included in analysis.


P. 11 of draft.

Tillage practice recommendations

"The above studies indicate that there is no compelling evidence to suggest that particular tillage management practices consistently reduce emissions of N_2O in cropland agriculture."

Doesn't address related question:

If reduced tillage is being practiced at a particular site what are the best recommended practices for reducing N₂O emissions?

Data to support the recommendation: Use of subsurface application can minimize N_2O emissions with reduced tillage.

1. Hultgreen and Leduc (2003):

In no-till flax/wheat/canola: Surface broadcast urea > Subsurface urea banding

2. Liu et al (2006):

In no-till corn in CO: Deeper injection of UAN reduced emissions compared to

surface application or shallower injection

3. Venterea et al (2005):

Subsurface Injection of AA Surface Broadcast Urea

Lower emissions from NT than CT Higher emissions from NT than CT

Surface Application of Stabilized N to No-Till Soils May Reduce N₂O emissions

Halvorson et al, In press (JEQ):

In irrigated no-till corn in CO:

Polymer-coated urea: Lower emissions than conventional Urea

Urea + inhibitors Lower emissions than conventional Urea

UAN + inhibitors: Lower emissions than conventional UAN

Reductions ranged from 30% to more than 50%.

ARS Multi-Location Study: Stabilized N Fertilizer Effects on Direct N_2O Emissions Mixed Results

Location	Crops	Soils	Irrigation	Tillage	Res	Results	
	Сторз	30113	irrigation		Polymer-coated urea	Urea plus inhibitors	
WA	Wheat	Silt loam	No	No-till ★	< Urea	< Urea	
со	Corn	Clay loam	Yes	Strip-Till No-till 🛨	< Urea	< Urea	
IA	Corn/ soybean	Loam Clay loam	No	Strip-till ★	> or = UAN	> or = UAN	
MN	Corn	Sandy loam	Both	Disk	= Urea	= Urea	
	Potato	Sandy loam	Yes	Disk	< or = Urea	Not evaluated	
	Corn	Silt loam	No	No-till, MB	= Urea	= Urea	
ку	Corn	Silt loam	No	No-till 🜟	> UAN > Urea	= UAN < Urea	
PA	Corn	Silt loam well-drained	No	No-till ★	= UAN = Urea	= UAN = Urea	
		Silt loam poorly-drained			= UAN = Urea	= UAN = Urea	
AL	Cotton/ rye	Loamy sand	No	No-till 🜟	= UAN = Urea	= UAN = Urea	

Huge Uncertainty of Estimating Indirect N₂O Sources

Simultaneous measurement of Nitrate Leaching and Direct N₂O Emissions

• Measured leaching = $20 - 40 \text{ kg N ha}^{-1} \text{ y}^{-1}$

• Wide Range for IPCC EFs: 0.05 - 2.5% of leached N converted to N_2O

• Equivalent to $0.1 - 1.0 \text{ kg N ha}^{-1} \text{ of N}_2\text{O}$

Depending on Emission Factor used:

Indirect Emissions due to leaching represent ~ 10 % to more than 100 % of Direct Emissions

- Baseline emissions (prior to mitigation efforts) are likely much higher than estimated from direct emissions
- Mitigation efforts are likely to have greater benefits than estimated from direct emissions reductions