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Rangelands are geographically

°
< ? h —r W’ - Greenland <
o\ %! \ <
» . ~ ~)
</ B¢ M \ ?3 A
> ‘\.,_ % d L.\'
A =
)Q {
'\\\ 3\ ;
V
Europe
Norih
Arnench J
- . ' T — l\\
) Alr »
S«
Am
-; - L
Australis

/

30 % of global land surface arca
30-50 % of US land area

23 million hectares in California




Rangeland systems: land on which plant cover
(climax, sub-climax, or potential) is composed
principally of grasses, grass-like plants, forbs
or shrubs suitable for grazing and browsing,

including both native and introduced plant
species (USDA, 2009a).
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There are approximately
23 million hectares of
rangeland in California
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Livestock raised on rangelands are an important
contributor to California’s agricultural economy

Table 1. Economic value of rangeland-supported industries in California (USDA, 2009b).

Livestock category Market value ($1,000)

2002 2007 2010 2011
Cattle and calves (excludes dairy products, 1,582,334 2,536,571 2,068,412 2,825,125
includes animals on feed)
Sheep, goats, and their products 52,418 71,890

Horses, ponies, mules, burros, and donkeys 32,397 72,433




Conceptual model of carbon and greenhouse
gas dynamics on California rangelands
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Plant production (a.k.a. forage production) is the primary
mechanism for carbon sequestration in rangelands
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Net Ecosystem Exchange
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Annual grasses and sensitive to climate



Rainfall in California is naturally highly variable and is likely to get
more variable in the future.
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Eddy covariance provides an estimate of net ecosystem exchange of CO,

Photo credit: D. Baldocchi Lab



These data highlight the sensitivity of rangeland C fluxes to rainfall
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Annual grasslands may be losing carbon under
current management and conditions
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Can rangeland management help mitigate
climate change?



Grasslands store one-third of the world's
soil carbon

Grasses allocate a large portion of photosynthate belowground to roots
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We can detect changes in rangeland soil carbon pools with
management

300,
0-50 cm depth
P Soils sampled from 35 grazed rangeland
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California Rangelands and Carbon
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California Rangelands and Carbon Sequestration

23 million hectares of rangeland statewide
Assume 50% available for C sequestration projects
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California Rangelands and Carbon Sequestration

23 million hectares of rangeland statewide
Assume 50% available for C sequestration projects

] NON-FOREST / NON-RANGELANDS
RANGELANDS

i " W rorest At a rate of 0.5 Mg C hal y!
i =21 MMT CO,ely

At arate of 1 Mg C ha'! y!
=42 MMT CO,ely

Units:
Mg = Metric ton

MMT= Million metric tons
CO,e = CO, equivalents

Emissions data: CA GHG Inventory 2010



California Rangelands and Carbon Sequestration

23 million hectares of rangeland statewide
Assume 50% available for C sequestration projects
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The potential for grazing to increase
carbon sequestration



Rangeland soils appear to be adapted to grazing
(not overgrazing)
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Improved grazing practices can sequester soil carbon
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Carbon sequestration potential
from improved grazing practices:

1.3 to 3.2 Mg CO,e ha'! y! (Eagle et al. 2011)
Scaled to 50% of California rangelands: 15-37 Tg CO,e y!

1 Mg C ha'! y'! (Conant et al. 2001)
Scaled to 50% of California rangelands: 42 Tg CO,e y’



Organic matter amendments increased soil carbon by
50 Mg C ha'! in the top meter of soil
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Manure applications have the potential to increase
nitrous oxide emissions
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Organic matter amendments to rangelands can
Increase carbon sequestration



Plant production (aka forage) has increased every year following a one
time compost application

I control I compost
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Net Ecosystem Production
Compost increase net C storage by 0.5 to 1.2 Mg C ha'! y!
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Organic matter amendments increase soil C pools
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Compost added an average of 3 Mg C/ha to the soil over
three years
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Organic matter amendments can be stored 1n pools
with long turnover times
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(b)

Model results suggest that C persists 1n soil for > 100 years
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Net Greenhouse Gas Flux since Compost Addition
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Scalability

Photo credit: John Wick



Scalability

One quarter of the rangeland area in California:

=23 Tg of CO,e y! (without including compost C)

=337 Tg of CO,e y! (with compost C additions)



Availability of compost

Potential compost production: 27 to 33 MMT y-!

Enough to reapply to 25% of California’s
rangelands every 17-40 years



Life cycle assessment suggests much higher climate
change mitigation potential

Global warming potential (MMT CO,e)
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Gaps in knowledge

Compost quality and

reenhouse gas emissions .
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Key Findings:

California’s rangelands are extensive and diverse. Even small rates of C sequestration and
emissions reduction across these landscapes have the potential to make significant contributions

to the State’s climate change mitigation goals.

Differences in the life history strategy of annual grasslands compared to perennial systems are
likely to lead to significant differences in management outcomes for climate change mitigation.

A large proportion of California’s rangelands are likely to be degraded with regard to soil C
pools, and thus have significant potential for increased C sequestration in soils through
management.

Organic mater amendments, and particularly composted organic wastes, are a viable strategy for

C sequestration on rangelands in California’s Mediterranean climate. This management approach
has the added benefit of greenhouse mitigation in other sectors (i.e. waste management, confined
livestock operations).

Well managed, rotational grazing is not likely to decrease soil C pools on rangelands, and could
increase C storage. Identification and testing of sustainable grazing practices will be particularly
important to meeting growing demands for meat and dairy products with population growth in
the State.

Climate change is posing new challenges to rangeland management in California.



Research Priorities

* Carbon and greenhouse gas dynamics of California’s diverse
rangelands

* (Grazing management to reduce greenhouse gas emissions and
increase C storage.

* The use of organic matter amendments for climate change
mitigation

* The interactions of grazing and fire management

* Modeling the effects of management alternatives (including
those outlined above) under changing climate






